Summary

在球蛋白细胞炎中进行半细胞外DNA半定量的受监督机器学习

Published: June 18, 2020
doi:

Summary

细胞外DNA(ecDNA)在细胞死亡期间释放是消炎,并会导致炎症。在损伤部位测量ecDNA可以确定靶器官治疗的有效性。该协议描述了使用机器学习工具自动测量肾脏组织中 ecDNA。

Abstract

球状细胞死亡是骨髓过氧化物酶抗中性粒细胞质抗体相关血管炎(MPO-AAV)的病理特征。细胞外脱氧核糖核酸(ecDNA)在不同形式的细胞死亡期间释放,包括凋亡、坏死、坏死、中性粒细胞外陷阱(NETs)和肺气肿。测量这种细胞死亡是耗时与几个不同的生物标志物需要识别不同的生化形式的细胞死亡。ecDNA 的测量通常以血清和尿液作为肾损伤的代理进行,而不是发生在发生病理损伤的实际目标器官中。目前调查肾内肾肾脱氧核糖核酸的难点在于缺乏在实验和存档的人类肾脏活检中采用正式固定石蜡嵌组织(FFPE)的方法。该协议概述了在 FFPE 组织(人类和鼠)中染色 ecDNA 所需的步骤,使用公开提供的开源 ImageJ 插件可训练的 Weka 分段,在生成的图像中测量 ecDNA。可训练的Weka分段应用于球蛋白中的ecDNA,程序学习对ecDNA进行分类。此分类器应用于后续获得的肾脏图像,减少了对每个单个图像进行手动注释的需要。可训练韦卡分段的适应性在肾组织中进一步证明,从实验鼠抗MPO球状体炎(GN),以识别NET和ecMPO,抗MPO GN的常见病理贡献者。该方法对肾组织中的ecDNA进行了客观分析,明确证明了可训练的Weka分段程序能够区分正常肾组织和患病肾组织之间的疗效。该协议可以很容易地适应,以识别在其他器官的ecDNA,NET和ecMPO。

Introduction

骨髓环氧酶抗中性粒细胞质抗体相关血管炎(MPO-AAV)是一种自身免疫性疾病,导致肾功能衰竭的病理球状损伤与相当大的细胞死亡和脱氧核糖核酸(DNA)释放11,2。2DNA可以作为危险信号激活免疫系统。在正常健康条件下,DNA的核位置可以保护他们免受免疫系统的照射。自我DNA在致病过程或自身免疫过程中在细胞外释放,被免疫系统视为一种有效的亲炎损伤相关分子自蛋白(DAMP)3。额外的细胞DNA(ecDNA)通过几个不同的机制从垂死细胞中释放出来,这些机制受不同的生化途径控制,如凋亡、神经球菌外细胞陷阱形成(NET)、坏死或肺尘埃增多4,4、5、6、7、8。5,6,7,8

我们在此描述从死亡细胞释放的ecDNA的方法,从实验抗MPO GN和从MPO-AAV99,1010患者患者体内固定石蜡嵌入(FFPE)肾脏部分释放。从血清和尿液以及体外测定11,12,12检测中检测循环双链DNA(dsDNA)和DNA复合物的方法有多种。这些方法虽然准确确定ecDNA的含量,但不能确定在解剖学上释放ecDNA的位置。有一些方法描述了ecDNA的具体测量,如凋亡调谐器和细胞碎片的测量13,14。13,没有任何方法描述测量ecDNA在发生病理损伤的FFPE肾脏中所有形式的细胞死亡。这一点很重要,以确定实验性治疗是否正在清除从实际目标器官的病理损伤部位的ecDNA。

从肾脏样本中采集多个图像可创建大量数据,通常由一个用户进行分析。这耗费人力,耗时,由于用户偏见,其他用户可能会难以重现。可训练Weka分段是ImageJ的开源软件插件,它使用尖端的生物信息工具使用机器学习算法15、16,16对像素进行分类。此方法是”可训练”的,它根据用户对像素段的分类来学习,并将新学习的分类应用于其他图像。此方法依赖于 ImageJ 程序中的常见分析工具,这些工具用于将段中的每个像素”分类”为属于特定”类”。程序学习”分类器”后,可用于识别同一图像中的其他类似分类段。然后,此模型将保存并应用于同一实验中的其他图像集。

目前确定肾分部原位ecDNA的障碍是内源性自荧光,从正式固定在形式和劳动密集型分析的图像。我们在这里描述如何淬火这种自动荧光,检测ecDNA,并使用监督机器学习进行高通量测量ecDNA。我们之前已经发布了使用 ImageJ 中的宏进行的 NET 和细胞外 MPO (ecMPO) 的测量,现在我们演示了这些方法使用监督机器学习1的半自动化。我们演示了机器学习工具的适应性,以在同一图像中对 NET 和 ecMPO 的替代污渍进行分类。此处描述的这些染色方法用于检测 ecDNA、NET 和 ecMPO,可转换为其他固体器官和疾病,其中 ecDNA、NETS 和 ecMPO 在使类风湿性关节炎和狼疮,疾病长期存在中发挥作用。

Protocol

这种方法能够检测来自所有形式细胞死亡的泛性ecDNA。相同的方法和抗体用于人类肾脏活检组织(从第4步)。所有动物和人类科目都获得莫纳什大学和莫纳什健康大学(维多利亚州克莱顿)的伦理批准。 1. 染色的ecDNA与DAPI和β-Actin 在8-10周大的C57/Bl6小鼠中诱导一个20天的抗骨髓性球菌病(抗MPO-GN)模型,对照9。 使用 CO2腔对小鼠进行人?…

Representative Results

这些图像表示成功使用可训练 Weka 分段所需的多个步骤,以尽量减少从具有诱导抗 MPO GN 的小鼠荧光染色的 FFPE 肾脏组织中对 ecDNA 的劳动密集型人工测量。这些步骤在图 1和图2中总结,其中图像直接取自 Weka 分段程序,概述了分析过程中的每一个步骤。然后,图 3显示了该分析的测量结果,演示了程序在?…

Discussion

存在多种方案,用于测量肾上腺炎患者和小鼠模型血清和尿液中的消炎标记物。这种所述协议允许直接分析球状体内的细胞死亡产物(ecDNA、NET和ecMPO)。该协议中最重要的步骤是组织准备和成像。使用荧光染色方法进行分析的主要限制因素是组织自荧光。形式内固定石蜡组织受到自荧光,可以掩盖特定的荧光染色。染色方法的最后一步,其中幻灯片浸入苏丹黑色,衰减组织的自荧光,并允许通过…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们承认莫纳什微成像用于使用尼康C1直立共聚焦激光扫描显微镜和莫纳什组织学平台处理肾脏组织。

Materials

Bovine Serum Albumin SIGMA A2153 5% and 1% solutions are made up in PBS, can be made in bulk and frozen- discard once thawed.
Chicken anti Goat IgG (H+L) cross absorbed antibody Alexa Fluor 594 ThermoFisher Scientific A-21468 Spin in mini centrifuge for 1 minute prior to use to avoid any free conjugate in your antibody cocktail
Chicken anti mouse IgG (H+L) cross absorbed antibody, Alex Fluor 647 ThermoFisher Scientific A-121468 Spin in mini centrifuge for 1 minute prior to use to avoid any free conjugate in your antibody cocktail
Chicken anti rabbit IgG (H+L) Cross absorbed antibody Alexa Fluor 488 ThermoFisher Scientific A-21441 Spin in mini centrifuge for 1 minute prior to use to avoid any free conjugate in your antibody cocktail
Chicken sera SIGMA C5405 Made up in 1%BSA/PBS
Coverslips 24 x60 mm Azerscientific ES0107222 #1.5 This is not standard thickness- designed for use in confocal microscopy
EDTA 10mM SIGMA E6758 Add TRIS and EDTA together in distilled water and pH to 9, for antigen retrieval, can be made up in a 10x Solution
Ethanol 30%, 70% and 100% Chem Supply UN1170 Supplied as 100% undenatured ethanol- dilute to 30% and 70% using distilled water
Formaldehyde, 4% (10% Neutral buffered Formalin) TRAJAN NBF-500 Kidney is put into a 5ml tube containing 3ml of formalin for 16 hours at RT, formalin should be used in a fume hood
Glass histology slides- Ultra Super Frost, Menzel Glaze, 25×75 x1.0mm TRAJAN J3800AM4 Using positive charged coated slides is essential. We do not recommend using poly-L-lysine for coating slides as tissue dislodges from slides during the antigen retrieval step
Goat anti human/mouse MPO antibody R&D AF3667 Aliquot and freeze at minus 80 degrees upon arrival
Histosol Clini Pure CPL HISTOSOL 08 Used neat, in 200ml staining rack containers, use in a fume hood
Hydrophobic pen VECTOR Labs H-400 Use to draw circle around kidney tissue
Mouse anti human/mouse Peptidyl arginase 4 (PAD4) ABCAM ab128086 Aliquot and freeze at minus 80 degrees upon arrival
Nikon C1 confocal scanning laser head attached to Nikon Ti-E inverted Microscope Coherent Scientific Aliquot and freeze at minus 80 degrees upon arrival
Phosphate Buffered Saline SIGMA P38135 0.01M PB/0.09% NaCl Make up 5L at a time
Pressure Cooker 6L Tefal secure 5 Neo stainless Tefal GSA-P2530738 Purchased at local homeware store
Prolong Gold DAPI Life Technologies P36962 Apply drops directly to coverslip
Rabbit anti human/mouse Beta Actin antibody ABCAM ab8227 Aliquot and freeze at minus 80 degrees upon arrival
Rabbit anti human/mouse H3Cit antibody ABCAM ab5103 Aliquot and freeze at minus 80 degrees upon arrival
Staining rack 24 slides ProScitech H4465 Staining rack chosen has to be able to withstand boiling under pressure and incubation in 60 degree oven
Sudan Black B SIGMA 199664 0.3% Add 3g to a 1L bottle in 70% Ethanol, filter and protect from the light- stable for 6 months at room temperature
Tris 10mM SIGMA T4661 Add TRIS and EDTA together in distilled water and pH to 9, for antigen retrieval, can be made up in a 10x solution
Xylene Trajan XL005/20 Must be use used in a fume hood

References

  1. O’Sullivan, K. M., et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney International. 88 (5), 1030-1046 (2015).
  2. Jennette, J. C., Falk, R. J., Hu, P., Xiao, H. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annual Review of Pathology. 8, 139-160 (2013).
  3. Jorgensen, I., Rayamajhi, M., Miao, E. A. Programmed cell death as a defence against infection. Nat Rev Immunol. 17 (3), 151-164 (2017).
  4. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303 (5663), 1532-1535 (2004).
  5. Wyllie, A. H., Kerr, J. F., Currie, A. R. Cell death: the significance of apoptosis. International Review of Cytology. 68, 251-306 (1980).
  6. Fiers, W., Beyaert, R., Declercq, W., Vandenabeele, P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 18 (54), 7719-7730 (1999).
  7. Pasparakis, M., Vandenabeele, P. Necroptosis and its role in inflammation. Nature. 517 (7534), 311-320 (2015).
  8. Fink, S. L., Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cellular Microbiology. 8 (11), 1812-1825 (2006).
  9. Ooi, J. D., Gan, P. Y., Odobasic, D., Holdsworth, S. R., Kitching, A. R. T cell mediated autoimmune glomerular disease in mice. Current Protocols in Immunology. 107, 15.27.11-15.27.19 (2014).
  10. Ruth, A. J., et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. Journal of the American Society of Nephrology. 17 (7), 1940-1949 (2006).
  11. Nagler, M., Insam, H., Pietramellara, G., Ascher-Jenull, J. Extracellular DNA in natural environments: features, relevance and applications. Applied Microbiology and Biotechnology. 102 (15), 6343-6356 (2018).
  12. Burnham, P., et al. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nature Communications. 9 (1), 2412 (2018).
  13. Gobe, G. Identification of apoptosis in kidney tissue sections. Methods in Molecular Biology. 466, 175-192 (2009).
  14. Olander, M., Handin, N., Artursson, P. Image-Based Quantification of Cell Debris as a Measure of Apoptosis. Analytical Chemistry. 91 (9), 5548-5552 (2019).
  15. Arganda-Carreras, I., et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 33 (15), 2424-2426 (2017).
  16. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  17. Apel, F., Zychlinsky, A., Kenny, E. F. The role of neutrophil extracellular traps in rheumatic diseases. Nature Reviews Rheumatology. 14 (8), 467-475 (2018).
  18. Chapman, E. A., et al. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Frontiers in Immunology. 10, 423 (2019).
  19. Oliveira, V. C., et al. Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histology & Histopathology. 25 (8), 1017-1024 (2010).
  20. Kessenbrock, K., et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature Medicine. 15 (6), 623-625 (2009).
  21. Schreiber, A., et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proceedings of the National Academy of Sciences of the United States of America. 114 (45), E9618-E9625 (2017).
  22. Antonelou, M., Perea Ortega, L., Harvey, J., Salama, A. D. Anti-myeloperoxidase antibody positivity in patients without primary systemic vasculitis. Clinical and Experimental Rheumatology. 37 (2), 86-89 (2019).

Play Video

Cite This Article
O’Sullivan, K. M., Creed, S., Gan, P., Holdsworth, S. R. Supervised Machine Learning for Semi-Quantification of Extracellular DNA in Glomerulonephritis. J. Vis. Exp. (160), e61180, doi:10.3791/61180 (2020).

View Video