Wir beschreiben eine schnelle Färbemethode zur multispektralen Bildgebung an gefrorenen Geweben.
Multispektrale Fluoreszenz-Bildgebung auf formalinfixiertem Paraffin-eingebetteten (FFPE)-Gewebe ermöglicht den Nachweis mehrerer Marker in einer einzigen Gewebeprobe, die Informationen über Antigenkoexpression und räumliche Verteilung der Marker liefern können. Ein Mangel an geeigneten Antikörpern für formalfixierte Gewebe kann jedoch die Art der Marker einschränken, die nachgewiesen werden können. Darüber hinaus ist die Färbemethode zeitaufwändig. Hier beschreiben wir eine schnelle Methode zur Multispektralfluoreszenz-Bildgebung an gefrorenen Geweben. Die Methode umfasst die verwendeten Fluorophorkombinationen, detaillierte Schritte zur Färbung von Maus- und menschlichen gefrorenen Geweben sowie die Scan-, Erfassungs- und Analyseverfahren. Für die Färbeanalyse wird ein handelsübliches multispektrales Fluoreszenz-Bildgebungssystem eingesetzt. Durch diese Methode wurden bis zu sechs verschiedene Marker in einem einzigen gefrorenen Gewebeabschnitt gebeizt und nachgewiesen. Die Machine Learning-Analysesoftware kann Zellen phänotypieren, die für die quantitative Analyse verwendet werden können. Die hier beschriebene Methode für gefrorene Gewebe ist nützlich für den Nachweis von Markern, die in FFPE-Geweben nicht nachgewiesen werden können oder für die Antikörper für FFPE-Gewebe nicht verfügbar sind.
Jüngste Fortschritte bei mikroskopischen Bildgebungstechniken haben unser Wissen und Verständnis von biologischen Prozessen und Krankheitszuständen deutlich verbessert. Der In-situ-Nachweis von Proteinen in Geweben über die chromogene Immunhistochemie (IHC) wird routinemäßig in der Pathologie durchgeführt. Der Nachweis mehrerer Marker mit chromogener IHC-Färbung ist jedoch eine Herausforderung1 und neuere Methoden zur Verwendung von Multiplex-Immunfluoreszenz-Färbeansätzen (mIF), bei denen mehrere biologische Marker auf einer einzigen Gewebeprobe gekennzeichnet sind, werden entwickelt. Der Nachweis mehrerer biologischer Marker ist nützlich, da Informationen zur Gewebearchitektur, zur räumlichen Verteilung von Zellen und zur Antigen-Co-Expression alle in einer einzigen Gewebeprobe erfasst werden2. Der Einsatz multispektraler Fluoreszenz-Bildgebungstechnologie hat den Nachweis mehrerer biologischer Marker ermöglicht. In dieser Technologie können die Fluoreszenzspektren jedes einzelnen Fluorophors durch spezifische Optik getrennt oder “ungemischt” werden, was die Detektion mehrerer Marker ohne Spektralüberlaufermöglicht 3. Multispektrale Fluoreszenz-Bildgebung wird zu einem kritischen Ansatz in der Zellbiologie, präklinischen Arzneimittelentwicklung, klinischen Pathologie und Tumorimmunprofilierung4,5,6. Wichtig ist, dass die räumliche Verteilung von Immunzellen (speziell CD8-T-Zellen) als prognostischer Faktor für Patienten mit bestehenden Tumoren dienen kann7.
Verschiedene Ansätze zur Multiplexfluoreszenzfärbung wurden entwickelt und können entweder gleichzeitig oder sequenziell durchgeführt werden. Bei der gleichzeitigen Färbemethode werden alle Antikörper als Cocktail in einem einzigen Schritt zusammengefügte, um das Gewebe zu kennzeichnen. Die UltraPlex-Technologie verwendet einen Cocktail von haptenkonjugierten Primärantikörpern, gefolgt von einem Cocktail fluorophor-konjugierter antihapten sekundärer Antikörper. Die InSituPlex-Technologie8 verwendet einen Cocktail aus einzigartigen DNA-konjugierten Primärantikörpern, die dem Gewebe gleichzeitig zugesetzt werden, gefolgt von einem Amplifikationsschritt und schließlich fluorophorkonjugierten Sonden, die jede einzigartige DNA-Sequenz am primären Antikörper ergänzen. Beide Technologien ermöglichen den Nachweis von vier Markern plus 4′,6-Diamino-2-Phenylindole (DAPI) für die kerntechnische Färbung. Zwei weitere Ansätze zur simultanen Multiplexfärbung basieren auf der sekundären Ionenmassenspektrometrie9. Das Hyperion Imaging System verwendet bildgebende Massenzytometrie10, um bis zu 37 Marker zu erkennen. Diese Technologie verwendet einen Cocktail aus metallkonjugierten Antikörpern, um das Gewebe zu färben, und bestimmte Bereiche des Gewebes werden durch einen Laser ablated und auf ein Massenzytometer übertragen, wo die Metallionen nachgewiesen werden. Eine weitere ähnliche Technologie ist der IONPath, der Multiplex-Ionen-Strahl-Bildgebungstechnologie11verwendet. Diese Technologie verwendet ein modifiziertes Massenspektrometrieinstrument und eine Sauerstoffionenquelle anstelle von Laser, um die metallkonjugierten Antikörper abzuschleifen. Während all diese simultanen Multiplex-Färbeansätze den Nachweis mehrerer Marker ermöglichen, sind die Kosten für die Konjugation von DNA, Hapten oder Metallen zu Antikörpern, der Gewebeverlust durch Ablation und die umfangreiche Bildverarbeitung zum Entmischen nicht zu unterschätzen. Darüber hinaus sind Kits und Färbeprotokolle derzeit nur für FFPE-Gewebe verfügbar, und die Entwicklung von kundenspezifischen Panels erfordert zusätzlichen Zeit- und Aufwand.
Die sequenzielle Multiplex-Färbungsmethode hingegen umfasst die Kennzeichnung des Gewebes mit einem Antikörper auf einen Marker,, um den Antikörper zu entfernen, gefolgt von sequenziellen Wiederholungen dieses Prozesses, um mehrere Marker12zu beschriften. Die Tyramidsignalverstärkung (TSA) ist die am häufigsten verwendete sequenzielle Multiplexing-Methode. Zwei weitere Multiplexing-Technologien verwenden eine Kombination aus simultanen und sequentiellen Färbemethoden. Die CODEX-Plattform13 verwendet einen Cocktail von Antikörpern, die zu einzigartigen DNA-Oligonukleotidsequenzen konjugiert sind, die schließlich mit einem Fluorophor mit einem indizierten Polymerisationsschritt gekennzeichnet werden, gefolgt von Bildgebung, Abisolieren und Wiederholen des Prozesses, um bis zu 50 Marker zu erkennen. Der MultiOmyx Multiplex-Färbungsansatz14 ist eine Iteration der Färbung mit einem Cocktail von drei bis vier fluorophorkonjugierten Antikörpern, bildgebend, das Abschrecken der Fluorophore und die Wiederholung dieses Zyklus, um bis zu 60 Marker auf einem einzigen Abschnitt zu erkennen. Ähnlich wie bei der gleichzeitigen Multiplex-Färbungsmethode, während eine breite Palette von Markern erkannt werden kann, ist die Zeit, die mit Färbung, Bildaufnahme, Verarbeitung und Analyse verbunden ist, umfangreich. Der Stripping/Quenching-Schritt beinhaltet das Erhitzen und/oder Bleichen der Gewebeprobe und somit wird der sequenzielle Multiplex-Färbungsansatz häufig an FFPE-Geweben durchgeführt, die die Gewebeintegrität beim Erhitzen oder Bleichen erhalten.
Formalin Fixierung und nachfolgende Paraffin-Einbettung wird leicht in einer klinischen Umgebung durchgeführt, Gewebeblöcke sind einfach zu lagern, und mehrere Multiplex-Färbung Protokolle sind verfügbar. Die Verarbeitung, Einbettung und Deparaffinisierung von FFPE-Geweben sowie Antigenabruf15, ein Prozess, bei dem Antikörper besser auf Epitope zugreifen können, ist jedoch zeitaufwändig. Darüber hinaus trägt die Verarbeitung in FFPE-Geweben zur Autofluoreszenz16 bei und maskiert Zielepitope, was zu der Variabilität und dem Mangel an Antikörperklon führt, die zum Nachweis von Antigenen in FFPE-Geweben17,18,19zur Verfügung stehen. Ein Beispiel ist die menschliche Leukozytenantigen (HLA) Klasse I Allele20. Im Gegensatz dazu beinhaltet das Einfrieren von Geweben keine umfangreichen Verarbeitungsschritte vor oder nach der Fixierung, wodurch die Notwendigkeit eines Antigenabrufs21,22umgangen wird und es für die Erkennung einer breiteren Palette von Zielen von Vorteil ist. Daher kann die Verwendung von gefrorenem Gewebe für die multispektrale Fluoreszenz-Bildgebung wertvoll sein, um Ziele für präklinische und klinische Studien zu detektieren.
Angesichts der oben genannten Einschränkungen bei der Verwendung von FFPE-Geweben haben wir gefragt, ob multispektrale Fluoreszenz-Bildgebung an gefrorenen Geweben durchgeführt werden kann. Um diese Frage zu beantworten, testeten wir eine simultane Multiplex-Färbungsmethode mit einem Panel von fluorophorkonjugierten Antikörpern, um mehrere Antigene zu erkennen, und analysierten die Färbung mit einem semiautomatisierten multispektralen Bildgebungssystem. Wir konnten innerhalb von 90 min bis zu sechs Marker in einem einzigen Gewebeabschnitt färben.
Gefrorene Gewebe wurden ausgiebig für die mIF-Bildgebung verwendet, um traditionell drei bis vier Marker31 auf einem Gewebe mit der direkten und indirekten Methode32zu erkennen. Bei der direkten Methode werden Antikörper mit fluoreszierenden Farbstoffen oder Quantenpunkten33 konjugiert, um das Gewebe zu kennzeichnen, während bei der indirekten Methode ein unkonjugierter Primärantikörper verwendet wird, um das Gewebe zu kennzeichnen, gefolgt von …
The authors have nothing to disclose.
Die Anleitung zur Bildgebung und Analyse wurde vom Research Resources Center – Research Histology and Tissue Imaging Core an der University of Illinois at Chicago mit Unterstützung des Büros des Vizekanzlers für Forschung bereitgestellt. Die Arbeit wurde von NIH/NCI RO1CA191317 an CLP, von NIH/NIAMS (SBDRC Grant 1P30AR075049-01) an Dr. A. Paller und mit Unterstützung des Robert H. Lurie Comprehensive Cancer Center an den Immunotherapy Assessment Core an der Northwestern University unterstützt.
Acetone (histological grade) | Fisher Scientific | A16F-1GAL | Fixing tissues |
Alexa Fluor 488 anti-mouse CD3 | BioLegend | 100212 | Clone – 17A2; primary conjugated antibody |
Alexa Fluor 488, eBioscience anti-human CD20 | ThermoFisher Scientific | 53-0202-82 | Clone – L26; primary conjugated antibody |
Alexa Fluor 555 Mouse anti-Ki-67 | BD Biosciences | 558617 | Primary conjugated antibody |
Alexa Fluor 594 anti-human CD3 | BioLegend | 300446 | Clone – UCHT1; primary conjugated antibody |
Alexa Fluor 594 anti-mouse CD8a | BioLegend | 100758 | Clone – 53-6.7; primary conjugated antibody |
Alexa Fluor 647 anti-human CD8a | BioLegend | 372906 | Clone – C8/144B; primary conjugated antibody |
Alexa Fluor 647 anti-mouse CD206 (MMR) | BioLegend | 141711 | Clone – C068C2; primary conjugated antibody |
Alexa Fluor 647 anti-mouse CD4 Antibody | BioLegend | 100426 | Clone – GK1.5; primary conjugated antibody |
C57BL/6 Mouse | Charles River Laboratories | 27 | Mouse frozen tissues used for multispectral training |
Coplin Jar | Sigma Aldrich | S6016-6EA | Rehydrating and washing slides |
DAPI Solution | BD Biosciences | 564907 | Nucleic Acid stain |
Diamond White Glass Charged Slides | DOT Scientific | DW7590W | Adhering tissue sections |
Dulbecco's Phosphate Buffered Saline 1x (without Ca and Mg) | Fisher Scientific | MT21031CV | Washing and diluent |
Gold Seal Cover Slips | ThermoFisher Scientific | 3306 | Protecting stained tissues |
Human Normal Tonsil OCT frozen tissue block | AMSBio | AMS6023 | Human frozen tissue used for multispectral staining |
Human Serum 1X | Gemini Bio-Products | 100-512 | Blocking and diluent for human tissues |
inForm | Akoya Biosciences | Version 2.4.1 | Machine learning software |
PerCP/Cyanine5.5 anti-human CD4 | BioLegend | 300529 | Clone – RPA-T4; primary conjugated antibody |
PerCP-Cy 5.5 Rat Anti-CD11b | BD Biosciences | 550993 | Clone – M1/70; primary conjugated antibody |
Phenochart | Akoya Biosciences | Version 1.0.8 | Whole slide scan software |
ProLong Diamond Antifade Mountant | ThermoFisher Scientific | P36965 | Mounting medium |
Research Cryostat | Leica Biosystems | CM3050 S | Sectioning tissues |
Superblock 1X | ThermoFisher Scientific | 37515 | Blocking mouse tissues |
Tissue-Tek O.C.T Solution | Sakura Finetek | 4583 | Embedding tissues |
Vectra 3.0 Automated Quantitative Pathology Imaging System, 6 Slide | Akoya Biosciences | CLS142568 | Semi-automated multispectral imaging system |
Vectra Software | Akoya Biosciences | Version 3.0.5 | Software to operate microscope |