שתי שיטות של העשרה כולסטרול מוצגים: היישום של cyclodextrin רווי כולסטרול כדי להעשיר את רקמות היונקים ואת התאים, ואת השימוש של פוספוליפיד זרחן מועשר מבוססי מפזרים (ליפוזומים) כדי להעשיר Xenopus oocytes. שיטות אלה הן אינסטרומנטלי לקביעת ההשפעה של רמות הכולסטרול הגבוהות בתפקוד המולקולרי, הסלולר והעוגב.
העשרת כולסטרול של רקמות ותאים מיונקים, כולל Xenopus oocytes המשמשים ללימוד תפקוד התא, ניתן לבצע באמצעות מגוון שיטות. כאן אנו מתארים שתי גישות חשובות המשמשות למטרה זו. ראשית, אנו מתארים כיצד להעשיר רקמות ותאים עם כולסטרול באמצעות cyclodextrin רווי כולסטרול באמצעות עורקים מוחין (רקמות) ו נוירונים היפוקמאל (תאים) כדוגמאות. גישה זו יכולה לשמש עבור כל סוג של רקמות, תאים, או קווי תאים. גישה חלופית להעשרה כולסטרול כרוכה בשימוש בליפרוטאין בצפיפות נמוכה (LDL). היתרון של גישה זו הוא כי היא משתמשת בחלק ממנגנון הומאוסטזיס טבעי של הכולסטרול של התא. עם זאת, בעוד הגישה cyclodextrin ניתן להחיל להעשיר כל סוג תא של עניין עם כולסטרול, גישה LDL מוגבל לתאים המבטאים קולטני LDL (למשל, תאי הכבד, מח עצם נגזר תאים כגון לוקיציטים דם ומקרופאגים רקמות), ואת רמת העשרה תלוי בריכוז וניידות של קולטן LDL. יתר על כן, חלקיקי LDL כוללים שומנים אחרים, כך משלוח כולסטרול הוא לא ספציפי. שנית, אנו מתארים כיצד להעשיר Xenopus oocytes עם כולסטרול באמצעות הפיזור פוספוליפיד מבוסס (כלומר, ליפוזומים) הכולל כולסטרול. קסנפוס אוציטים מהווה מערכת הטרוולוגי פופולרית המשמשת ללימוד תאים וחלבונים. הן הגישה הcyclodextrin המבוססת על כולסטרול של רקמת היונקים (עורקים מוחית) ועל הגישה המבוססת פוספוליפיד כולסטרול של Xenopus oocytes, אנו מדגימים כי רמות הכולסטרול להגיע למקסימום הבא 5 דקות של דגירה. רמה זו של כולסטרול נשאר קבוע במהלך תקופות ממושכות של דגירה (למשל, 60 דקות). יחד, נתונים אלה לספק את הבסיס עבור תנאים הזמני אופטימיזציה עבור העשרה כולסטרול של רקמות, תאים, ו Xenopus oocytes למחקרים פונקציונליים שמטרתה חקירת ההשפעה של העשרה כולסטרול.
כולסטרול, השומנים הסלולר העיקריים, משחק תפקידים קריטיים מבניים רבים1,2,3,4,5,6,7,8,9. מתוך ויסות התכונות הפיזיות של קרום הפלזמה כדי להבטיח את הכדאיות התאית, צמיחה, התפשטות, והגשה כמולקולה איתות ו קודמן בשפע של מסלולים ביוכימיים, כולסטרול הוא רכיב חיוני הכרחי תאים תא נורמלי הפונקציה. כתוצאה מכך, חוסר כולסטרול תוצאות מומים פיזיים חמורים מגוון רחב של הפרעות. מצד שני, אפילו עלייה קטנה בכולסטרול מעל רמות פיזיולוגיות (2-3x) הוא ציטוטוקסי11,2,10 והוא נקשר עם פיתוח של הפרעות, כולל לב וכלי דם11,12,13 מחלות נוירוניווניות14,15,16,17. כך, כדי לחקור את הפונקציות הקריטיות של כולסטרול כדי לקבוע את ההשפעה של שינויים ברמות הכולסטרול, גישות שונות המשנות את התוכן של כולסטרול ברקמות, תאים, ו- Xenopus oocytes פותחו.
שינוי ברמות הכולסטרול ברקמות ובתאים של היונקים
מספר גישות ניתן לרתום כדי להקטין את רמות הכולסטרול ברקמות ובתאים18. גישה אחת כרוכה החשיפה שלהם כדי סטטינים התפרקה ליפופרוטאין סרום לקויה לעכב hmg-CoA רדוקטאז, אשר שולטת על שיעור סינתזה כולסטרול19,20. עם זאת, אלה תרופות הפחתת כולסטרול גם לעכב את היווצרות של מוצרים שאינם sterol לאורך השביל mevalonate. לכן, כמות קטנה של mevalonate מתווסף כדי לאפשר היווצרות של מוצרים אלה21 ולשפר את הספציפיות של גישה זו. גישה נוספת להפחתת רמות הכולסטרול כרוכה בשימוש בβ-ציקלודטרינים. אלה ונומרים מונודורים בעלי חלל הידרופובי פנימי עם קוטר המתאים לגודל של תחום ה סטרולים22, אשר מקלה על החילוץ של כולסטרול מתאים, ובכך מכלה אותם מתוכן כולסטרול יליד שלהם23. דוגמה היא 2-הידרוקסיל-β-cyclodextrin (HPβCD), תרופה פרה-קלינית הנבדקת כיום לטיפול במחלת מחלת הבחור הנימן, הפרעת מטבולית קטלנית תורשתית המאופיינת באחסון כולסטרול ליזוזומבית24. רמת המחסור בכולסטרול תלויה בנגזרת הספציפית שבשימוש. לדוגמה, HPβCD מחלצת כולסטרול בקיבולת נמוכה יותר מאשר הנגזרת המתיל, הβ-cyclodextrin (MβCD)24,25,26,27,28,29,30. בעיקר, עם זאת, β-ציקלודטרינים יכולים גם לחלץ מולקולות הידרופובי אחרים בנוסף לכולסטרול, אשר עשוי לגרום להשפעות שאינן ספציפיות31. בניגוד דלדול, תאים ורקמות יכול להיות מועשר במיוחד עם כולסטרול באמצעות הטיפול עם β-cyclodextrin כי כבר presaturated עם כולסטרול23. גישה זו יכולה לשמש גם כשליטה על הספציפיות של β-ציקלודטרינים המשמשים למחסור בכולסטרול31. דלדול כולסטרול מן הרקמות והתאים הוא פשוט יכול להיות מושגת על ידי חשיפת התאים עבור 30-60 דקות כדי 5 mM MβCD מומס במדיום המשמש לאחסון התאים. גישה זו יכולה לגרום לירידה של 50% בתוכן כולסטרול (למשל, ב נוירונים בהיפוקמפוס32, העורקים המוח מוחין33). מצד שני, הכנת מורכבות β-cyclodextrin-כולסטרול עבור העשרת כולסטרול של רקמות ותאים מורכבים יותר, והוא יתואר בסעיף הפרוטוקול.
גישה חלופית להעשרת רקמות ותאים באמצעות β-cyclodextrin רווי כולסטרול כרוך בשימוש LDL, אשר מסתמך על קולטני LDL המבוטא ברקמות/תאים18. בעוד גישה זו מציעה את היתרון של שימוש במנגנון הומאוסטזיס כולסטרול טבעי של התא, יש לו מספר מגבלות. ראשית, רקמות ותאים שאינם מבטאים את קולטן ה-LDL לא ניתן להעשיר באמצעות גישה זו. שנית, חלקיקי LDL מכילים שומנים אחרים בנוסף לכולסטרול. באופן ספציפי, LDL מורכב חלבון ApoB100 (25%) ואת השומנים הבאים (75%): ~ 6-8% כולסטרול, ~ 45-50% cholesteryl אסתר, ~ 18-24% פוספוליפידים, ו ~ 4-8% triacylglycerols34. כך, משלוח של כולסטרול באמצעות חלקיקי LDL הוא לא ספציפי. שלישית, אחוז העלייה בתוכן כולסטרול על-ידי LDL ברקמות ובתאים המבטאים את קולטן ה-LDL עשוי להיות נמוך באופן משמעותי מהעלייה שנצפתה באמצעות cyclodextrin רווי בכולסטרול. למשל, במחקר הקודם, העשרה של עורקים מוחין מכרסמים עם כולסטרול דרך LDL הביא רק 10-15% עלייה ברמות הכולסטרול35. לעומת זאת, העשרת העורקים הללו עם cyclodextrin רווי כולסטרול כפי שמתואר בסעיף הפרוטוקול הביאו לעלייה של > 50% בתכולת הכולסטרול (ראה סעיף תוצאות מייצגים, איור 1).
שינוי של רמות כולסטרול בקסנפוס אוציטים
קסנפוס אוציטים מהווים מערכת ביטוי הטרוולוגי המשמשת בדרך כלל לחקר תאי וחלבון. מחקרים מוקדמים הראו כי הכולסטרול ליחס פוספוליפיד טוחנת ב Xenopus oocytes הוא 0.5 ± 0.136. בשל רמה גבוהה פנימית של כולסטרול, הגדלת התוכן של כולסטרול במערכת זו הוא מאתגר, עדיין ניתן להשיג באמצעות דיספרסיות ממברנה פוספוליפידים וכולסטרול. פוספוליפידים כי בחרנו למטרה זו דומים לאלה המשמשים ליצירת השומנים מישורי מלאכותי bilayers וכוללים L-α-פוספולידילטנולטואמין (האפיפיור) ו-1-palmitoyl-2-oleoyl-sn-3-פוספאו-L-סרין (פופס), כמתואר בסעיף הפרוטוקול. גישה זו יכולה לגרום לעלייה של > 50% בתכולת הכולסטרול (ראה סעיף תוצאות מייצגות, איור 2).
גישה חלופית כדי להעשיר Xenopus מועשר עם מפזרים פוספוליפיד זרחן כרוך בשימוש של cyclodextrin רווי כולסטרול, אשר דומה הרקמות והתאים מועשרים. עם זאת, מצאנו את הגישה הזאת כדי להיות בלתי מנוצחת ויעילות נמוכה, עם ממוצע של ~ 25% עלייה בתוכן כולסטרול. ייתכן שהדבר נובע מיכולת הטעינה השונה של שתי גישות אלה (ראה סעיף ‘ תוצאות מייצגות ‘, איור 3). לעומת זאת, זה הוכח כי באמצעות cyclodextrin כדי לרוקן את הכולסטרול מ Xenopus oocytes יכול לגרום ~ 40% ירידה בתוכן כולסטרול36.
כאן, אנו מתמקדים העשרה כולסטרול של רקמות ותאים באמצעות היישום של cyclodextrin רווי כולסטרול, ו Xenopus אוציטים באמצעות ליפוזומים. שתי הגישות ניתן לרתום כדי להתוות את ההשפעה של רמות גבוהות של כולסטרול על תפקוד החלבון. המנגנונים של אפנון כולסטרול של פונקציית חלבון עשויים לכלול אינטראקציות ישירות8 ו/או אפקטים עקיפים9. כאשר הכולסטרול משפיע על תפקוד החלבון באמצעות אינטראקציות ישירות, ההשפעה של גידול ברמות הכולסטרול על פעילות החלבון היא כנראה עצמאית של סוג התא, מערכת הביטוי, או גישה העשרה. לדוגמה, אנו מנוצל שתי גישות אלה כדי לקבוע את ההשפעה של כולסטרול ב-G-חלבון מגודרת בתוכו אשלגן (girk) ערוצים מבוטא פרפור מייציטים37, היפוקמוניות נוירונים32,38, HEK29339 תאים, ו xenopus oocytes32,37. התוצאות שהתקבלו במחקרים אלה היו עקביים: בכל שלושת הסוגים של התאים המיונקים ובתוך הכולסטרול האמפיבי הכולסטרול של הערוץ (ראה מדור תוצאות נציג, איור 4, עבור נוירונים היפוקמאל והניסויים המתאימים xenopus oocytes). יתר על כן, תצפיות שנעשו במחקרים אלה היו גם עקבי עם תוצאות המחקרים שבוצעו ב פרפור מייציטים37,40 ו היפוקמאל נוירונים32,38 מבודדים טרי מבעלי חיים נתון דיאטה כולסטרול גבוה40. בעיקר, העשרה כולסטרול של נוירונים היפוקמאל באמצעות MβCD הפך את ההשפעה של טיפול atorvastatin המשמש לטיפול ההשפעה של הדיאטה הכולסטרול הגבוה הן על רמות כולסטרול ו-GIRK פונקציה38. במחקרים אחרים, חקרנו את ההשפעה של מוטציות על רגישות כולסטרול של מבפנים לתקן אשלגן לתקן את קיר 2.1 באמצעות שניהם Xenopus oocytes ו HEK293 תאים41. שוב, השפעת המוטציות על רגישות הערוץ הייתה דומה בשתי המערכות.
היישומים של שתי שיטות העשרה לקביעת ההשפעה של רמות הכולסטרול הגבוהות בתפקוד המולקולרי, הסלולר והעוגב הם רבים. בפרט, השימוש של מתחמי cyclodextrin-כולסטרול כדי להעשיר את התאים והרקמות הוא נפוץ מאוד בעיקר בשל הייחוד שלה. דוגמאות אחרונות של גישה זו כוללות את קביעת ההשפעה של כולסטרול על הפעלת ערוץ HERG ומנגנונים הבסיסי42, גילוי כי כולסטרול מפעיל את חלבון G מצמידים קולטן Smoothened כדי לקדם קיפוד איתות43, ואת הזיהוי של התפקיד של כולסטרול בביומכניקה של תא גזע ו אדיפוגנזה באמצעות רפידת מקשר הקשורים חלבונים44. בעבודתנו שלנו, אנו מנוצלים העשרה רקמות המסיביות עם MβCD: קומפלקס כולסטרול כדי ללמוד את ההשפעה של העשרה כולסטרול על הפונקציה הבסיסית ואת פרופיל פרמקולוגית של סידן, מתח מגודרת ערוצים של מוליכות גדולה (BK, מקסימינק) בשריר חלק וסקולרית35,45,46. במחקרים אחרים, השתמשנו הגישה מבוססי פוספוליפיד מבוסס פיזור עבור מעשיר xenopus של הכולסטרול עם כולסטרול כדי לקבוע את התפקידים של אזורים שונים ב-קיר 2.1 ו-girk של הרגישות כולסטרול41,47,48,49, כמו גם כדי לקבוע אתרים כולסטרול בכבלים הללו בערוצים אלה32,50,51.
שיטות כדי להעשיר את רקמות היונקים ואת התאים ו Xenopus oocytes עם כולסטרול מהווים כלי רב עוצמה לחקירת ההשפעה של רמות כולסטרול גבוהות על מינים מולקולריים בודדים, על מערכות macromolecular מורכבות (למשל, חלבונים), ועל תפקוד הסלולר והעוגב. במאמר זה, תיארנו שתי גישות משלימות המקלות על מחקרים כאלה. ראשית, ת…
The authors have nothing to disclose.
עבודה זו נתמכת על ידי מענק פיתוח מדען (11SDG5190025) מאיגוד הלב האמריקני (ל-ar-D.), ועל ידי המכון הלאומי של בריאות R01 מענקים AA-023764 (כדי A.N.B.), ו-HL-104631 ו R37 AA-11560 (ל-M. D).
Amplex Red Cholesterol Assay Kit | Invitrogen | A12216 | |
Pierce BCA Protein Assay Kit | Thermo Scientific | 23225 | |
Pre-Diluted Protein Assay Standards BSA set | Thermo Scientific | 23208 | |
Brain PE 25Mg in Chloroform | Avanti Lipids | 840022C | |
16:0-18:1 PS 25Mg Chloroform | Avanti Lipids | 840034C | |
Cholesterol 100Mg Powder | Sigma | C8667 | |
KCl | Fisher | P217 | |
Trizma base | Sigma | T6066 | |
HEPES | Corning | 61-034-RO | |
MgCl2 | Fisher | M33 | |
NaCl | Fisher | S271 | |
KH2PO4 | Fisher | P285 | |
MgSO4 | EMD Chemicals | MX0070-1 | |
EDTA | VWR | E177 | |
Dextrose Anhydrous | Fisher | BP350 | |
NaHCO3 | Sigma | S6014 | |
CaCl2 | Sigma | C3881 | |
Blood Gas Tank | nexAir | ||
NaOH | Fisher | S318 | |
1.5mL tubes | Fisher | S35818 | |
Gastight Syringe 100uL | Hamilton | 1710 | |
Microliter Syringe 25uL | Hamilton | 702 | |
12 mL heavy duty conical centrifuge beaded rim tube | Pyrex | 8120-12 | |
Chloroform | Fisher | C298 | |
Support Stand | Homescience Tools | CE-STAN5X8 | |
Universal Clamp, 3-Prong | Homescience Tools | CE-CLPUNIV | |
Sonicator | Laboratory Supplies | G112SP1G | |
3D rotator mixer | Benchmark Scientific | B3D 1308 | |
96 well plate | Sigma | BR781602 | |
N2 gas | nexAir | ||
Glass beakers 40ml-1L | Fisher | 02-540 | |
Ice Machine | Scotsman | CU1526MA-1 | |
Ice bucket | Fisher | 50-136-7764 | |
1X PBS | Corning | 21-031-CM | |
TritonX | Fisher | BP151-100 | |
Sonic Dismembrator | Fisher | Model 100 | |
Eppendorf microcentrifuge | Eppendorf | Model 5417R | |
Amber bottles | Fisher | 03-251-420 | |
Corning™ Disposable Glass Pasteur Pipets | FIsher | 13-678-4A | |
Parafilm | FIsher | 50-998-944 | |
Isotemp™ BOD Refrigerated Incubator | FIsher | 97-990E | |
Oocytes | Xenoocyte™ | 10005 | |
Rat | Envigo | Sprague Dawley | weight 250g |
Methyl-β-cyclodextrin | Sigma | C4555 | |
Water bath incubator with shaker | Precision | 51221080 | Lowest shaker setting O/N 37 °C |
Filipin | Sigma | SAE0088-1ML | |
DMSO | Fisher | BP231 | |
Paraformaldehyde 4% | Mallinckrodt | 2621 | |
DI H2O | University DI source | ||
ProLong Gold antifade reagnet | Invitrogen | P10144 | |
Microslides 75x25mm Frosted | Diagger | G15978A | |
Forceps | Fine Science Tools | 11255-20 | |
Microscope Coverslip | Diagger | G15972B | |
Clear nail polish | Revlon | 771 Clear | |
Labeling Tape | Fisher | 15-901-20F | |
Securline Lab Marker II | Sigma | Z648205-5EA | |
BD 10mL Syringe | Fisher | 14-823-16E | |
1.2 μm syringe filter | VWR | 28150-958 | |
KimWipes | Fisher | 06-666A | |
pH probe | Sartorus | py-p112s | |
pH meter | Denver instrument | Model 225 | |
70% ETOH | Pharmco | 211USP/NF | |
Timer | Fisher | 02-261-840 | |
Steno book | Staples | 163485 |