このプロトコルは、マイコバクテリウム・マリナム感染時の胚性ゼブラフィッシュにおけるマクロファージ挙動および死を可視化する技術を記述する。細菌の調製、胚の感染、およびバイタル内顕微鏡検査のステップが含まれています。この技術は、感染または無菌炎症を伴う同様のシナリオにおける細胞行動および死亡の観察に適用され得る。
ゼブラフィッシュは、その透明な性質と初期の発達中の自然免疫系のみに依存しているため、自然免疫細胞の挙動を研究するための優れたモデル生物です。ゼブラフィッシュマイコバクテリウム・マリナム(M.マリナム)感染モデルは、マイコバクテリア感染に対する宿主免疫応答の研究において十分に確立されている。異なるマクロファージ細胞死の種類は、マイコバクテリア感染の多様な結果につながることが示唆されている。ここでは、M.マリナム感染後のゼブラフィッシュ胚におけるマクロファージ細胞死を観察するために、生内顕微鏡を用いたプロトコルについて説明する。マクロファージと好中球を特異的に標識するゼブラフィッシュトランスジェニックラインは、中脳または幹のいずれかで蛍光標識M.marinumの筋肉内マイクロインジェクションを介して感染する。感染したゼブラフィッシュ胚は、その後、低融解アガロースに取り付けられ、X-Y-Z-T次元の共焦点顕微鏡によって観察される。長期ライブイメージングでは、光漂白や光毒性を避けるために低いレーザーパワーを使用する必要があるため、トランスジェニックを強く表現することを強くお勧めします。このプロトコルは、免疫細胞遊走、宿主病原体相互作用、および細胞死を含む生体内の動的プロセスの可視化を容易にする。
マイコバクテリア感染は、宿主免疫細胞死1を引き起こすことが実証されている。例えば、減衰した株はマクロファージ中のアポトーシスを引き起こし、感染を含む。しかし、毒性株は、溶解細胞死を引き起こし、細菌の播種を引き起こす1、2.これらの異なるタイプの細胞死が宿主抗抗抗抗抗抗細菌応答に及ぼす影響を考慮すると、生体内でのマイコバクテリア感染時のマクロファージ細胞死の詳細な観察が必要である。
細胞死を測定する従来の方法は、Annnexin V、TUNEL、またはアクリジンオレンジ/ヨウ化プロピジウム染色3、4、5などの死細胞染色を使用することです。しかし、これらの方法は、生体内での細胞死の動的過程に光を当てることができません。インビトロでの細胞死の観察は、すでに生イメージング6によって促進されている。しかしながら、結果が生理学的条件を正確に模倣するかどうかは不明のままである。
ゼブラフィッシュは、宿主抗抗抗抗抗抗抗菌応答を研究するための優れたモデルである。それは人間と同様に高度に保存された免疫系を有し、容易に操作されるゲノム、および初期胚は透明であり、生きたイメージングを可能にする7、8、9を可能にする。M.マリナムとの感染後、成人ゼブラフィッシュは典型的な成熟肉芽腫構造を形成し、胚性ゼブラフィッシュは構造9、10のような早期肉芽腫を形成する。自然免疫細胞間細菌相互作用の動的過程は、ゼブラフィッシュM.マリナム感染モデル11、12において以前に検討されている。しかし、空間的な時間分解能の要件が高いため、自然免疫細胞の死を取り巻く詳細はほとんど未定義のままである。
ここでは、生体内のマイコバクテリア感染によって引き起こされるマクロファージ溶解細胞死のプロセスを可視化する方法について説明する。このプロトコルはまた、発達および炎症の間に生体内の細胞行動を視覚化するために適用され得る。
このプロトコルは、マイコバクテリア感染時のマクロファージ死の可視化を記述する。細胞膜の完全性などの因子に基づいて、感染駆動細胞死は、アポトーシスおよび溶解細胞死24、25に分けることができる。溶解細胞死は、アポトーシスよりも生物にとってストレスであり、強い炎症反応を引き起こすので24、25<sup class="x…
The authors have nothing to disclose.
ゼブラフィッシュ株を共有してくれたジロン・ウェン博士、ステファン・オーラーズ博士、デビッド・トビン博士がM.マリナム関連の資源を共有してくれたことに感謝します。この作品は、中国国立自然科学財団(81801977)(B.Y.)、上海市保健委員会優秀青少年研修プログラム(2018YQ54)(B.Y.)、上海セーリングプログラム(18YF1420400)、上海キー研究所オープンファンド(2018年)によって支援されました。
0.05% Tween-80 | Sigma | P1379 | |
10 mL syringe | Solarbio | YA0552 | |
10% OADC | BD | 211886 | |
3-aminobenzoic acid | Sigma | E10521 | |
5 μm filter | Mille X | SLSV025LS | |
50 μl/ml hygromycin | Sangon Biotech | A600230 | |
7H10 | BD | 262710 | |
7H9 | BD | 262310 | |
A glass bottom 35 mm dish | In Vitro Scientific | D35-10-0-N | |
Agarose | Sangon Biotech | A60015 | |
Confocal microscope | Leica | TCS SP5 II | |
Enviromental Chamber | Pecon | temp control 37-2 digital | |
Eppendorf microloader | Eppendorf | No.5242956003 | |
Glass microscope slide | Bioland Scientific LLC | 7105P | |
Glycerol | Sangon Biotech | A100854 | |
Incubator | Keelrein | PH-140(A) | |
M.marinum | ATCC BAA-535 | ||
Microinjection needle | World Precision Instruments | IB100F-4 | |
Microinjector | Eppendorf | Femtojet | |
Micromanipulator | NARISHIGE | MN-151 | |
msp12:cerulean | Ref.: PMID 25470057; 27760340 | ||
Phenol red | Sigma | P3532 | |
PTU | Sigma | P7629 | |
Single concavity glass microscope slide | Sail Brand | 7103 | |
Sonicator | SCICNTZ | JY92-IIDN | |
Spectrophotometer (OD600) | Eppendorf AG | 22331 Hamburg | |
Stereo Microscope | OLYMPUS | SZX10 | |
Tg(mfap4:eGFP) | Ref.: PMID 30742890 | ||
Tg(coro1a:eGFP;lyzDsRed2) | Ref.: PMID 31278008 | ||
Tg(mpeg1:LRLG;lyz:eGFP) | Ref.: PMID 27424497; 17477879 |