We describe a delayed inoculation protocol for generating chronic wound infections in immunocompetent mice.
Pseudomonas aeruginosa (P. aeruginosa) is a major nosocomial pathogen of increasing relevance to human health and disease, particularly in the setting of chronic wound infections in diabetic and hospitalized patients. There is an urgent need for chronic infection models to aid in the investigation of wound pathogenesis and the development of new therapies against this pathogen. Here, we describe a protocol that uses delayed inoculation 24 hours after full-thickness excisional wounding. The infection of the provisional wound matrix present at this time forestalls either rapid clearance or dissemination of infection and instead establishes chronic infection lasting 7–10 days without the need for implantation of foreign materials or immune suppression. This protocol mimics a typical temporal course of post-operative infection in humans. The use of a luminescent P. aeruginosa strain (PAO1:lux) allows for quantitative daily assessment of bacterial burden for P. aeruginosa wound infections. This novel model may be a useful tool in the investigation of bacterial pathogenesis and the development of new therapies for chronic P. aeruginosa wound infections.
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative rod-shaped bacterium with increasing relevance to human health and disease. It is responsible for extensive morbidity and mortality in nosocomial settings, particularly involving wound infections in immunocompromised patients1,2. The emergence of multidrug-resistant strains of this pathogen has provided further impetus for investigation into factors contributing to P. aeruginosa virulence, mechanisms of P. aeruginosa antibiotic resistance, and new methods for prevention and treatment of this deadly infection3. As such, the need for animal models of chronic wound infection as tools for investigating these research questions has never been greater.
Unfortunately, many animal models of P. aeruginosa infection tend to simulate acute infection with rapid resolution of infection or rapid decline due to sepsis4,5, which does not adequately simulate the oftentimes chronic nature of these infections. To address this drawback, some models utilize the implantation of foreign bodies such as agar beads, silicone implants, or alginate gels6,7,8. Other models use mice that are immunocompromised due to advanced age, obesity, or diabetes, or through pharmacological means such as cyclophosphamide-induced neutropenia9,10,11,12. However, either the use of foreign materials or immune compromised hosts likely alters the local inflammatory process, making it difficult to gain an understanding of the pathophysiology involved in chronic wound infections in hosts with otherwise normal immune systems.
We have developed a chronic model of P. aeruginosa wound infection in mice that involves delayed inoculation with bacteria after excisional wounding. Delayed inoculation allows for experiments assessing bacterial burden extending out to at least 7 days. This model opens up new opportunities for investigating both pathogenesis and new treatments of P. aeruginosa chronic infections.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) at Stanford University.
1. Preparation and growth of bacteria
2. Procedure preparation
3. Hair removal
4. Full thickness excisional wound surgery
5. Inoculation with P. aeruginosa
6. In vivo imaging of infected wounds
7. Postoperative management
8. Wound excision
Using a luminescent strain of PAO1 with a plasmid encoding the luxABCDE reporter system (PAO1:lux), we performed excisional wounding on mice, inoculated these wounds with planktonic P. aeruginosa 24 h later, and measured bacterial burden over time (Figure 1 and Figure 2). A representative image obtained using an imaging optical system demonstrates that this model results in detectable luminescence (Figure 3A). Infection peaked at day 3 post-inoculation and persisted 7 days post-inoculation based on both bioluminescence and colony counts (Figure 3B–C). Using this model, we are able to reliably generate wounds lasting 7-10 ays depending on the strain of bacteria and the mouse background. Culture of the bacteria isolated from the wound showed that quantified CFU/wound correlated with detected luminescence (Figure 3D). Finally, despite demonstrable and quantifiable P. aeruginosa infection, mice survived for at least 7 days. Though there was initial rapid weight loss immediately after infection, saline injections and supplemental nutrition resulted in restoration of weight (Figure 3E). Finally, we calculated the inoculation dose at which 50% of wounds would become sustainably infected with PAO1. The calculated IC50 value was ~7.7 x 102 CFU/mL. Doses higher than 104 CFU/mL resulted in 100% infection rate (Figure 3F). These results were adapted from previously published data13.
Figure 1: Schematic depicting the excisional full-thickness wound infection model with delayed inoculation with bioluminescent P. aeruginosa. Streak PAO1:lux on day -2. Select a colony on day -1 and grow overnight in LB broth. Perform excisional wound surgery on day -1. On day 0, inoculate with PAO1:lux by injecting into the wound bed through the transparent film dressing. Perform bioluminescence imaging after inoculation. Repeat imaging as often as daily through day 7–10. On day 7–10, sacrifice animals and harvest wounds. Please click here to view a larger version of this figure.
Figure 2: Schematic of excisional wound surgery. After hair removal and sterilization of skin with alcohol and betadine, use a 6 mm biopsy punch to make an initial incision through the epidermis of the left and right dorsum. Use scissors and forceps to remove the dermal and epidermal layers. Wash with PBS. Cover with a clear dressing. Please click here to view a larger version of this figure.
Figure 3: P. aeruginosa wound infection can be detected through 7 days of infection. (A) Representative image of a mouse infected with PAO1:lux with bioluminescence overlay on excisional wounds. (B) Luminescent signal reflecting wound bacterial burden. N = 6 wounds. Inoculation: 105 CFU/mL PAO1. (C) Linear regression analysis of in vivo luminescent signal and bacterial CFU of PAO1:lux-infected wounds, collected 4–7 days post-inoculation with 105 CFU/mL to allow for a range of bacterial burdens. (D) Bacterial burden in CFU/wound over time in mice infected with 105 CFU/mL PAO1:lux. (E) Weight change (relative to weight before wound excision surgery on T = -1) N = 4 mice/group. Depicted are boxplots for 5–95 percentile. Statistics are Two-way ANOVA corrected with Sidak multiple comparison. (F) Nonlinear regression analysis of wound infection rate used to calculate the IC50 for PAO1 three days post-inoculation. All graphs are representative of n≥3 experiments. This figure has been modified from Sweere et al. 201913. Please click here to view a larger version of this figure.
We have developed a novel delayed inoculation P. aeruginosa wound infection model. The strategy of delaying inoculation with bacteria until 24 h after excisional wounding enables the evaluation of wound infections over a 1-week timeframe. By using a luminescent strain of P. aeruginosa, it is possible to track infection progression throughout the infection course. The longer course of infection compared to other P. aeruginosa infection models will allow new opportunities for studying host-pathogen interactions and novel therapies targeting P. aeruginosa wound infections. For example, we have already used this model to demonstrate the role of Pf bacteriophage in stimulating an antiviral immune response that allows P. aeruginosa to evade the host immune system14.
The inclusion of 24 h of recovery time between the excisional wound surgery and bacterial inoculation is a critical step in this wound infection model. It allows the animals to recover from the wound surgery before being infected, which likely plays a role in their ability to survive through at least 7 days. Furthermore, it supports the formation of a provisional wound matrix prior to inoculation, which, in combination with the transparent film dressing, provides an environment conducive to biofilm formation. We performed a series of exploratory experiments during the development of this model looking at different amounts of time between wounding and inoculation. In our experience, immediate inoculation after wounding often results in sepsis and death. Conversely, inoculation at 48 hours and later time points led to unacceptable levels of heterogeneity between mice and between wounds on the same mouse. As evident in Figure 3A, there can still be some degree of expected heterogeneity in the bacterial load of infected wounds, even with the 24-h delayed inoculation. One way to compensate for this is to use multiple animals in each experiment.
A unique aspect of this protocol is the excision of two wounds independently rather than folding the skin down the midline and punching through to create two bilateral wounds, as is done in some other wound models. We found that this folding method was also effective for producing symmetrical wounds with clean margins. However, mice treated in this manner typically became septic quickly after bacterial inoculation and died. We believe that this may be because this folding method removes the dermal Panniculus carnosus – a thin layer of muscle underlying the skin of mice that is not present in humans. We speculate that this barrier may help prevent bacterial dissemination.
An important component of this protocol is sufficient hair removal from the surgical site, as excess hair could provide a nidus for superinfection and interferes with adherence of the transparent film dressing. We have found that shaving in addition to hair removal cream provides optimal hair removal with minimal skin irritation, though thoroughly washing off the cream with warm water is still important.
Another integral factor is nutritional support, hydration, and pain control during the first few days of the postsurgical and infection course. To address this, we administer 500 µL of subcutaneous 0.9% sodium chloride on day -1 and 0, then 250 µL on day 1 and 2. We also supply a multivitamin and caloric liquid gel supplement at the time of the excisional wound surgery. As demonstrated in Figure 3E, these measures allow for adequate recovery of weight by Day 3. With regard to analgesia, we have found that sustained release 0.5 mg/kg buprenorphine given prior to the excisional wound surgery provides sufficient pain control for 72 h, but additional doses can be given if warranted based on findings of distress in any individual mouse.
Though a model of P. aeruginosa wound infection extending to 7–10 days is a significant advantage over more acute models of infection, this still may not be sufficient for answering certain research questions involving more chronic infections. One reason for this limitation is that the luminescent signal of the PAO1:lux strain of P. aeruginosa peaks at day 2–3 (Figure 3B). After ~7 days the luciferase signal can become unreliable. For this reason, we quantify the bacteria by plating wound effluent on LB plates and counting CFUs in order to confirm infection of each wound at the end of the experiment. Another possible disadvantage of this model is the requirement for an in vivo imaging system, which some labs may not have access to. One way around this obstacle is to use non-luminescent wild type bacterial strains. This still allows the researcher to take advantage of this chronic infection model and, as indicated above, the bacteria CFUs can be quantified at the end of the experiment.
We have described a novel model of delayed inoculation P. aeruginosa wound infection that enables experiments extending to 7–10 days. This model will serve as a useful tool for evaluating the host-pathogen interaction with P. aeruginosa, as well as the development of new therapies. This model has the potential for multiple future directions, including adaptation for other wound pathogens such as Staphylococcus aureus, as well as polymicrobial infections including P. aeruginosa combined with other pathogens.
The authors have nothing to disclose.
The pUT-Tn5-EM7-lux-Km1 luminescent construct vector was a gracious gift from J. Hardy. Schematics were created with BioRender.com. We thank the lab of G. Gurtner for their advice on the wound infection model. We also thank T. Doyle from the Stanford Center for Innovation in In Vivo Imaging for his technical expertise. This work was supported by grants R21AI133370, R21AI133240, R01AI12492093, and grants from Stanford SPARK, the Falk Medical Research Trust and the Cystic Fibrosis Foundation (CFF) to P.L.B. C.R.D was supported by T32AI007502. A Gabilan Stanford Graduate Fellowship for Science and Engineering and a Lubert Stryer Bio-X Stanford Interdisciplinary Graduate Fellowship supported J.M.S.
0.9% Sodium Chloride injection | Hospira | 2484457 | |
18 G x 1 sterile needle | BD | 305195 | |
25 G x 1 1/5 sterile needle | BD | 305127 | |
Alcohol swab | BD | 326895 | |
Aura Imaging Software | Spectral Instruments Imaging | n/a | |
Betadine | Purdue Frederick Company | 19-065534 | |
Buprenorphine SR LAB | Zoopharm | n/a | |
C57BL/6J male mice | The Jackson Laboratory | 000664 | |
Disposable biopsy punch, 6mm | Integra | 33-36 | |
Fine scissors – Tungsten Carbide | Fine Science Tools | 14568-09 | |
Glass Bead Dry Sterilizer | Harvard Apparatus | 61-0183 | |
Granulated Agar | Fisher BioReagents | BP9744 | |
Heating Pad | Milliard | 804879481218 | |
Insulin syringe with 28 G needle | BD | 329461 | |
Lago X Imaging System | Spectral Instruments Imaging | n/a | |
LB broth | Fisher BioReagents | BP1426 | |
Leur-Lok 1 mL syringe | BD | 309628 | |
Mini Arco Animal Trimmer | Wahl Professional | 919152 | |
Nair Hair Removal Lotion with Baby Oil | Church and Dwight | n/a | Available at any pharmacy |
Octagon Forceps | Fine Science Tools | 11041-08 | |
Petri dish | Falcon | 351029 | |
Phosphate Buffered Saline (PBS) 1x | Corning | 21-040-CV | |
Press and Seal Cling Wrap | Glad | n/a | |
SafetyGlide Insulin syringe with 30 G needle | BD | 305934 | |
Safetyglide Insulin syringe, 1/2 mL, 30 G x 5/16 TW | BD | 305934 | |
Scale | Ohaus Scout Pro | SP202 | |
Supplical Nutritional Supplement | Henry Schein Animal Health | 29908 | |
Tegaderm, 6 cm x 7 cm | 3M | 1624W |