Summary

Whole Mount Immunohistochemistry in Zebrafish Embryos and Larvae

Published: January 29, 2020
doi:

Summary

Here, we present a protocol for fluorescent antibody-mediated detection of proteins in whole preparations of zebrafish embryos and larvae.

Abstract

Immunohistochemistry is a widely used technique to explore protein expression and localization during both normal developmental and disease states. Although many immunohistochemistry protocols have been optimized for mammalian tissue and tissue sections, these protocols often require modification and optimization for non-mammalian model organisms. Zebrafish are increasingly used as a model system in basic, biomedical, and translational research to investigate the molecular, genetic, and cell biological mechanisms of developmental processes. Zebrafish offer many advantages as a model system but also require modified techniques for optimal protein detection. Here, we provide our protocol for whole-mount fluorescence immunohistochemistry in zebrafish embryos and larvae. This protocol additionally describes several different mounting strategies that can be employed and an overview of the advantages and disadvantages each strategy provides. We also describe modifications to this protocol to allow detection of chromogenic substrates in whole mount tissue and fluorescence detection in sectioned larval tissue. This protocol is broadly applicable to the study of many developmental stages and embryonic structures.

Introduction

The zebrafish (Danio rerio) has emerged as a powerful model for the study of biological processes for several reasons including short generation time, rapid development, and amenability to genetic techniques. As a result, zebrafish are commonly used in high throughput small molecule screens for toxicological research and drug discovery. Zebrafish are also an attractive model for the study of developmental processes given that a single female can routinely produce 50-300 eggs at a time and the optically clear embryos develop externally allowing for efficient visualization of developmental processes. However, early research relied mostly on forward genetic screens using N-ethyl-N-nitrosourea (ENU) or other mutagens due to challenges in establishing reverse genetic techniques. Roughly two decades ago, morpholinos were first used in zebrafish to knockdown targeted genes1. Morpholinos are small antisense oligonucleotides that inhibit translation of target mRNA following microinjection into an embryo at an early developmental stage. A major weakness of morpholinos is that they are diluted as the cells divide and generally lose effectiveness by 72 hours post-fertilization (hpf). While morpholinos remain a powerful tool for zebrafish gene disruption, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats (CRISPRs) are more recently being used to directly target the zebrafish genome2,3. These reverse genetic strategies, in combination with forward genetics and high throughput screens, have established the zebrafish as a powerful model to study gene expression and function.

The ability to study gene function generally requires an evaluation of the spatio-temporal distribution of gene or gene product expression. The two most commonly used techniques to visualize such expression patterns during early development are in situ hybridization (ISH) and whole mount immunohistochemistry (IHC). In situ hybridization was first developed in 1969 and relies on the use of labeled antisense RNA probes to detect mRNA expression in an organism4. In contrast, labeled antibodies are used in immunohistochemistry to visualize protein expression. The idea of labeling proteins for detection dates back to the 1930's5 and the first IHC experiment was published in 1941 when FITC-labeled antibodies were used to detect pathogenic bacteria in infected tissues6. ISH and IHC have evolved and improved significantly over the subsequent decades and are now both routinely used in the molecular and diagnostic research laboratory7,8,9,10,11. While both techniques have advantages and disadvantages, IHC offers several benefits over ISH. Practically, IHC is much less time consuming than ISH and is generally less expensive depending on the cost of the primary antibody. In addition, mRNA expression is not always a reliable metric of protein expression as it has been demonstrated in mice and humans that only about a third of protein abundance variation can be explained by mRNA abundance12. For this reason, IHC is an important supplement to confirm ISH data, when possible. Finally, IHC can provide subcellular and co-localization data that cannot be determined by ISH13,14,15. Here, we describe a step-by-step method to reliably detect proteins by immunohistochemistry in whole mount zebrafish embryos and larvae. The goal of this technique is to determine the spatial and temporal expression of a protein of interest in the whole embryo. This technology utilizes antigen-specific primary antibodies and fluorescently tagged secondary antibodies. The protocol is readily adaptable to use on slide-mounted tissue sections and for use with chromogenic substrates in lieu of fluorescence. Using this protocol, we demonstrate that developing zebrafish skeletal muscle expresses ionotropic glutamate receptors, in addition to acetylcholine receptors. NMDA-type glutamate receptor subunits are detectable on the longitudinal muscle at 23 hpf.

Protocol

The procedures for working with zebrafish breeding adults and embryos described in this protocol were approved by the Institutional Animal Care and Use Committee at Murray State University. 1. Embryo Collection and Fixation Prepare spawning tanks by placing adult zebrafish mixed sex pairs or groups in tanks with a mesh or slotted liner filled with system water overnight. At lights on, change the spawning tank water for fresh system water to remove feces. Use a 14 h/10 h l…

Representative Results

Whole mount immunohistochemistry uses antibodies to detect the spatial pattern of protein expression in the intact animal. The basic workflow of immunohistochemistry (depicted in Figure 1) involves breeding zebrafish, raising and preparing embryos, blocking non-specific antigens, using an antigen-specific primary antibody to target the protein of interest, detecting that primary antibody with a labeled secondary antibody, mounting the specimen, and documentin…

Discussion

Immunohistochemistry is a versatile tool that can be used to characterize the spatio-temporal expression of virtually any protein of interest in an organism. Immunohistochemistry is used on a wide variety of tissues and model organisms. This protocol has been optimized for use in zebrafish. Immunohistochemistry in different species may require different fixation and handling techniques, blocking solutions depending on species and the presence of endogenous peroxidases, and incubation times due to the thickness and compos…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Funding from NIH grant 8P20GM103436 14.

Materials

Agarose Fisher Scientific BP160-100
Aluminum foil, heavy duty Kirkland Any brand may be substituted
Anti-NMDA antibody Millipore Sigma MAB363
Anti-phospho-Histone H3 (Ser10), clone RR002 Millipore Sigma 05-598
Anti-pan-AMPA receptor (GluR1-4) Millipore Sigma MABN832
Bovine serum albumin (BSA) Fisher Scientific BP1600-100
Calcium Nitrate [Ca(NO3)2] Sigma Aldrich C4955
Centrifuge tubes, 1.5 mL Axygen MCT150C
Clear nail polish Sally Hanson Any nail polish or hardener may be subsituted
Depression (concavity) slide Electron Miscroscopy Sciences 71878-01
Diaminobenzidine Thermo Scientific 1855920
Embryo medium, Danieau, 30% 17.4 mM NaCl, 0.21 mM KCl, 0.12 mM MgS04, 0.18 mM Ca(NO3)2, 1.5 mM HEPES in ultrapure water.
Embryo medium, E2 7.5 mM NaCl, 0.25 mM KCl, 0.5 mM MgSO4, 75 uM KH2PO4, 25 uM Na2HPO4, 0.5 mM CaCl2, 0.35 mM NaHCO3, 0.5 mg/L methylene blue
Floating tube holder Thermo Scientific 59744015
Fluorescence compound microscope Leica Biosystems DMi8
Fluorescence stereomicroscope Leica Biosystems M165-FC
Glass coverslips 18 x 18 Corning 284518
Glass coverslips 22 x 60 Thermo Scientific 22-050-222
Glass slides Fisher Scientific 12-544-4
Glycerol Fisher Scientific BP229-1
Goat anti-mouse IgG Alexa 488 Invitrogen A11001
HEPES solution Sigma Aldrich H0887
Humid chamber with lid Simport M920-2
Hydrogen peroxide, 30% Fisher Scientific H325-500
Immunedge pap pen Vector labs H-4000
Insect pins, size 00 Stoelting 5213323
Magnesium Sulfate (MgSO4 · 7H2O) Sigma Aldrich 63138
Mesh strainer Oneida Any brand may be substituted
Methanol Sigma Aldrich 34860
Methylene blue Sigma Aldrich M9140
Micro-tube cap lock Research Products International 145062
Microwave oven Toastmaster
Mouse IgG Sigma Aldrich I8765
Normal goat serum Millipore Sigma S02L1ML
Nutating mixer Fisher Scientific 88-861-044
Paraformaldehyde Fisher Scientific 04042-500
Pasteur pipettes Fisher Scientific 13-678-20C
PBTriton 1% TritonX-100 in 1x PBS
Permount mounting medium Fisher Chemical SP15-500
Petri dish (glass) Pyrex 3160100
Petri dish (plastic) Fisher Scientific FB0875713
1-phenyl 2-thiourea Acros Organics 207250250
Phosphate buffered saline (PBS), 10x, pH 7.4 Gibco 70011-044
Phosphate buffered saline (PBS), 1x 1x made from 10x stock diluted in dH2O
Potassium Chloride (KCl) Sigma Aldrich P9333
Potassium Hydroxide (KOH) Fisher P250-500
Potassium Phosphate Monobasic (KH2PO4) Sigma Aldrich P5655
Pronase Sigma Aldrich 10165921001
Proteinase K Invitrogen AM2544
Sodium Chloride (NaCl) Sigma Aldrich S7653
Sodium Phosphate Dibasic (Na2HPO4) Sigma Aldrich S7907
Spawning tank with lid and insert Aquaneering ZHCT100
SuperBlock PBS Thermo Scientific 37515
Superfrost + slides Fisher Scientific 12-550-15
Superglue gel 3M Scotch
TNT 100 mM Tris, pH 8.0; 150 mM NaCl; 0.1% Tween20; made in dH2O
Transfer pipette Fisher 13-711-7M
Trichloracetic Acid (Cl3CCOOH) Sigma Aldrich T6399
Tris Base Fisher Scientific S374-500
TritonX-100 Sigma Aldrich T9284
Tween20 Fisher Scientific BP337-500
Ultrafine forceps Fisher Scientific 16-100-121
Water, ultrapure/double distilled Fisher Scientific W2-20

References

  1. Nasevicius, A., Ekker, S. C. Effective targeted gene ‘knockdown’ in zebrafish. Nature Genetics. 26 (2), 216-220 (2000).
  2. Gaj, T., Gersbach, C. A., Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 31 (7), 397-405 (2013).
  3. Irion, U., Krauss, J., Nusslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 141 (24), 4827-4830 (2014).
  4. van der Ploeg, M. Cytochemical nucleic acid research during the twentieth century. European Journal of Histochemistry. 44 (1), 7-42 (2000).
  5. Marrack, J. Nature of Antibodies. Nature. 133 (3356), 292-293 (1934).
  6. Coons, A. H., Creech, H. J., Jones, R. N. Immunological properties of an antibody containing a fluorescent group. Proceedings of the Society for Experimental Biology and Medicine. 47 (2), 200-202 (1941).
  7. Lopez, M. E. Combined in situ Hybridization/Immunohistochemistry (ISH/IH) on Free-floating Vibratome Tissue Sections. Bio-protocol. 4 (18), (2014).
  8. Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K., Kawata, M. Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neuroscience Research. 26 (3), 235-269 (1996).
  9. Newton, S. S., Dow, A., Terwilliger, R., Duman, R. A simplified method for combined immunohistochemistry and in-situ hybridization in fresh-frozen, cryocut mouse brain sections. Brain Research Protocols. 9 (3), 214-219 (2002).
  10. Corthell, J. T., Corthell, J. T. . Basic Molecular Protocols in Neuroscience: Tips, Tricks, and Pitfalls. , 105-111 (2014).
  11. Corthell, J. T., Corthell, J. T. . Basic Molecular Protocols in Neuroscience: Tips, Tricks, and Pitfalls. , 91-103 (2014).
  12. Vogel, C., Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics. 13 (4), 227-232 (2012).
  13. Semache, M., Ghislain, J., Zarrouki, B., Tremblay, C., Poitout, V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets. 6 (4), e982376 (2014).
  14. Kang, H. S., Beak, J. Y., Kim, Y. S., Herbert, R., Jetten, A. M. Glis3 is associated with primary cilia and Wwtr1/TAZ and implicated in polycystic kidney disease. Molecular and Cellular Biology. 29 (10), 2556-2569 (2009).
  15. Billova, S., Galanopoulou, A. S., Seidah, N. G., Qiu, X., Kumar, U. Immunohistochemical expression and colocalization of somatostatin, carboxypeptidase-E and prohormone convertases 1 and 2 in rat brain. 神经科学. 147 (2), 403-418 (2007).
  16. Westerfield, M. . The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio). , (2000).
  17. Nüsslein-Volhard, C., Dahm, R. . Zebrafish: A Practical Approach. , (2002).
  18. Cheng, C. N., Li, Y., Marra, A. N., Verdun, V., Wingert, R. A. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization. Journal of Visualized Experiments. (89), (2014).
  19. Brennan, C., Mangoli, M., Dyer, C. E. F., Ashworth, R. Acetylcholine and calcium signalling regulates muscle fibre formation in the zebrafish embryo. Journal of Cell Science. 118 (22), 5181 (2005).
  20. Liu, D. W., Westerfield, M. Clustering of muscle acetylcholine receptors requires motoneurons in live embryos, but not in cell culture. The Journal of Neuroscience. 12 (5), 1859 (1992).
  21. Borodinsky, L. N., Spitzer, N. C. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America. 104 (1), 335-340 (2007).
  22. Brunelli, G., et al. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America. 102 (24), 8752-8757 (2005).
  23. Hans, F., Dimitrov, S. Histone H3 phosphorylation and cell division. Oncogene. 20 (24), 3021-3027 (2001).
  24. Yee, N. S., Pack, M. Zebrafish as a model for pancreatic cancer research. Methods in Molecular Medicine. 103, 273-298 (2005).
  25. Seth, A., Stemple, D. L., Barroso, I. The emerging use of zebrafish to model metabolic disease. Disease Models & Mechanisms. 6 (5), 1080-1088 (2013).
  26. Fontana, B. D., Mezzomo, N. J., Kalueff, A. V., Rosemberg, D. B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Experimental Neurology. 299 (Pt A), 157-171 (2018).
  27. Richter, K. N., et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. The EMBO journal. 37 (1), 139-159 (2018).
  28. Elsalini, O. A., Rohr, K. B. Phenylthiourea disrupts thyroid function in developing zebrafish. Development genes and evolution. 212 (12), 593-598 (2003).
  29. Wang, W. D., Wang, Y., Wen, H. J., Buhler, D. R., Hu, C. H. Phenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo. Biochemical pharmacology. 68 (1), 63-71 (2004).
  30. Bohnsack, B. L., Gallina, D., Kahana, A. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling. PloS one. 6 (8), e22991 (2011).
  31. Inoue, D., Wittbrodt, J. One for all–a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One. 6 (5), e19713 (2011).

Play Video

Cite This Article
Hammond-Weinberger, D. R., ZeRuth, G. T. Whole Mount Immunohistochemistry in Zebrafish Embryos and Larvae. J. Vis. Exp. (155), e60575, doi:10.3791/60575 (2020).

View Video