Hier wird ein Protokoll zur Erzeugung einer einzelzelligen Kultur menschlicher embryonaler Stammzellen und deren anschließende Differenzierung in neuronale Vorläuferzellen vorgestellt. Das Protokoll ist einfach, robust, skalierbar und eignet sich für Arzneimittelscreenings und anwendungen in der regenerativen Medizin.
Die In-vitro-Differenzierung menschlicher embryonaler Stammzellen (hESCs) hat die Fähigkeit verändert, die menschliche Entwicklung sowohl auf biologischer als auch auf molekularer Ebene zu untersuchen, und Zellen für den Einsatz in regenerativen Anwendungen bereitgestellt. Standardansätze für die hESC-Kultur, die Koloniekultur verwendet, um undifferenzierte hESCs und embryoiden Körper (EB) und Rosettenbildung zur Differenzierung in verschiedene Keimschichten aufrechtzuerhalten, sind ineffizient und zeitaufwändig. Hier wird eine Einzelzellkulturmethode vorgestellt, die hESCs anstelle einer Koloniekultur verwendet. Diese Methode ermöglicht die Aufrechterhaltung der charakteristischen Merkmale undifferenzierter hESCs, einschließlich der Expression von hESC-Markern auf Ebenen, die mit Kolonietyp-hESCs vergleichbar sind. Darüber hinaus stellt das Protokoll eine effiziente Methode für die Generierung von neuronalen Vorläuferzellen (NPC) aus einzelligen hESCs dar, die NPCs innerhalb einer Woche produziert. Diese Zellen exprimieren in hohem Maße mehrere NPC-Markergene und können sich in verschiedene neuronale Zelltypen differenzieren, einschließlich dopaminergen Neuronen und Astrozyten. Dieses einzellige Kultursystem für hESCs wird nützlich sein, um die molekularen Mechanismen dieser Prozesse, Studien zu bestimmten Krankheiten und Drogenentdeckungs-Screens zu untersuchen.
Menschliche embryonale Stammzellen (hESCs) haben das Potenzial, sich in die drei primären Keimschichten zu differenzieren, die sich dann in verschiedene multipotente Vorläuferzelllinien differenzieren. Diese Abstammungen führen in der Folge zu allen Zelltypen im menschlichen Körper. In-vitro-hESC-Kultursysteme haben die Fähigkeit, die menschliche embryonale Entwicklung zu untersuchen, verändert und als wertvolles Instrument gedient, um neue Erkenntnisse darüber zu erhalten, wie diese Prozesse auf biologischer und molekularer Ebene reguliert werden. In ähnlicher Weise liefern Studien mit induzierten pluripotenten Stammzellen (iPSCs), die aus der Reprogrammierung sammatischer Zellen, die von menschlichen Patienten isoliert wurden, generiert wurden, neue Einblicke in verschiedene Krankheiten. Darüber hinaus können Vorläufer und differenzierte Zellen, die aus hESCs gewonnen werden, für die Forschung mit Stammzelltherapie und Arzneimittelscreening1,2,3,4nützlich sein.
hESCs können induziert werden, um sich in neuronale Vorläuferzellen (NPCs) zu differenzieren, die Multipotentialzellen mit einer umfangreichen Selbsterneuerungskapazität sind. Anschließend können diese Zellen in Neuronen, Astrozyten und Oligodendrozyten 5,6unterschieden werden. NPCs bieten auch ein zelluläres System für In-vitro-Studien der Neuroentwicklungsbiologie und verschiedeneneurologische Erkrankungen. Die derzeitigen Koloniekulturmethoden, die hESCs und ihre Differenzierung in NPCs beinhalten, sind jedoch ineffizient und beinhalten häufig Kokultur sowie Embryoidenkörper (EB) und Rosettenbildung5,7,8,9. Diese Protokolle weisen niedrigere Überlebensraten und spontane Differenzierung auf und sind zeitaufwändiger.
Hier wird ein verbessertes und robustes Kultursystem vorgestellt, das leicht skalierbar ist und eine einzellige Kultur mit hoher Dichte von hESCs10verwendet. Die Einbeziehung von Rohkinase (ROCK) Inhibitor trug zur deutlich verbesserten Überlebenseffizienz während der einzelzelligen Typkultur von hESC10,11,12,13,14. In diesem Kultursystem können hESCs einfach gewartet und erweitert werden. Darüber hinaus stellt das Protokoll eine effiziente Methode zur Generierung von NPCs aus einer einzelligen Typkultur von hESCs dar, die die Produktion von hochreinen NPCs ermöglicht. Hemmung von BMP/TGF/Activin-Signalwegen mit ALK-Inhibitoren induziert effizient die Differenzierung von einzelligen HESCs in NPCs15,16, die dann induziert werden können, um sich in funktionelle neuroale Leitungen wie dopaminerische Neuronen zu differenzieren.
Zusammenfassend lässt sich sagen, dass das Einzelzelltypkulturprotokoll mit hESCs ein attraktives Modell bietet, um die Differenzierung dieser Zellen in verschiedene Linien, einschließlich NPCs, zu untersuchen. Dieses Protokoll ist leicht skalierbar und daher für die Erzeugung von Zellen für die Forschung mit regenerativer Therapie und Arzneimittelscreening geeignet.
Skalierbare und effiziente Methoden zur Differenzierung von hESCs in verschiedene Linien und die Erzeugung einer ausreichenden Anzahl differenzierter Zellen sind wichtige Kriterien für das Arzneimittelscreening und die Stammzelltherapie. Verschiedene einzellige Passmethoden wurden veröffentlicht, bei denen Zellen in Gegenwart von ROCK-Hemmern oder anderen kleinen Molekülen kultiviert werden, um das Überleben zu verbessern, aber die Endprodukte dieser Kulturmethoden sind Kolonietyp hESCs17…
The authors have nothing to disclose.
Wir danken Dr. Carl D. Bortner (NIEHS) für seine Unterstützung bei der FACS-Analyse. Diese Forschung wurde durch das Intramural Research Program des National Institute of Environmental Health Sciences, der National Institutes of Health, Z01-ES-101585 bis AMJ unterstützt.
35 mm m-dishes | ibidi | 81156 | Cell culture dish |
6-well plates | Corning | 3516 | |
Accutase | Innovative Cell Technologies | AT104-500 | Cell detachment solution |
Activin A | R&D system | 338-AC-050 | |
Ascorbic Acid | Sigma Aldrich | A4403 | |
B27 supplement | Thermo Fisher | 17504044 | |
B27 supplement (-Vit A) | Thermo Fisher | 12587010 | |
BDNF | Applied Biological Materials | Z100065 | |
bFGF | Peprotech | 100-18C | |
Centrifuge | DAMON/ICE | 428-6759 | |
CO2 incubator | Thermo Fisher | 4110 | |
Corning hESC-qulified Matrix (Magrigel) | Corning | 354277 | Basement membrane matrix (used for most of the protocol here) |
Cryostor CS 10 | Stemcell Technologies | 7930 | Cell freezing solution |
Dispase | Stemcell Technologies | 7923 | |
DMEM | Thermo Fisher | 10569-010 | |
DMEM/F12 | Thermo Fisher | 10565-018 | |
Dorsomorphin | Tocris | 3093 | |
EGF | Peprotech | AF-100-16A | |
Fetal Bovine Serum | Fisher Scientific | SH3007003HI | |
FGF8 | Applied Biological Materials | Z101705 | |
GDNF | Applied Biological Materials | Z101057 | |
Geltrex matrix | Thermo Fisher | A1569601 | Basement membrane matrix |
GlutaMax | Thermo Fisher | 35050061 | Glutamine supplement, 100X |
H9 (WA09) human embryonic stem cell line | WiCell | WA09 | |
Heregulin b-1 | Peprotech | 100-3 | |
IGF | Peprotech | 100-11 | |
Knockout DMEM | Thermo Fisher | 10829018 | |
Knockout Serum Replacement | Thermo Fisher | 10828028 | |
Laminin | Sigma Aldrich | L2020 | |
mTeSR1 | Stemcell Technologies | 85850 | hESC culture medium |
N2 supplement | Thermo Fisher | 17502001 | |
NEAA | Thermo Fisher | 11140050 | |
Neurobasal | Thermo Fisher | 21103049 | |
Poly-L-ornithine | Sigma Aldrich | P3655 | |
ROCK inhibitor | Tocris | 1254 | |
SB431542 | Tocris | 1614 | |
SHH | Applied Biological Materials | Z200617 | |
Stemdiff Neural Progenitor medium | Stemcell Technologies | 5833 | NPC expansion medium |