Burada sunulan yüksek tanımlı transkraniyal doğru akım stimülasyonu ile bir 3D sayısallaştırıcı birleştirerek stimülasyon yeri belirlenmesinde daha yüksek doğruluk elde etmek için bir protokoldür.
Nörogörüntüleme verilerinin bolluğu ve makine öğreniminin hızlı gelişimi beyin aktivasyon modellerinin araştırılmasını mümkün kılmıştır. Ancak, bir davranışa yol açan beyin bölgesi aktivasyonu nedensel kanıt genellikle eksik bırakılır. Transkraniyal doğru akım stimülasyonu (tDCS), geçici olarak beyin kortikal uyarılabilirlik ve aktivitesini değiştirebilir, insan beyninde nedensel ilişkileri incelemek için kullanılan bir noninvaziv nörofizyolojik araçtır. Yüksek tanımlı transkraniyal doğru akım stimülasyonu (HD-tDCS), konvansiyonel tDCS’ye göre daha fokal akım üreten noninvaziv bir beyin stimülasyonu (NIBS) tekniğidir. Geleneksel olarak, stimülasyon yeri kabaca 10-20 EEG sistemi ile belirlenmiştir, çünkü kesin stimülasyon noktalarının belirlenmesi zor olabilir. Bu protokol, uyarım noktalarının belirlenmesinde doğruluğu artırmak için HD-tDCS içeren bir 3B sayısallaştırıcı kullanır. Yöntem, doğru temporo-parietal kavşakta (rTPJ) stimülasyon noktalarının daha doğru lokalizasyonu için 3D sayısallaştırıcı kullanılarak gösterilmiştir.
Transkraniyal doğru akım stimülasyonu (tDCS), kortikal uyarılabilirliği kafa derisi üzerinde zayıf doğru akımlarla modüle eden noninvaziv bir tekniktir. Bu sağlıklı insanlarda nöral uyarılabilirlik ve davranışarasındanedensellik kurmayı amaçlamaktadır 1,2,3. Buna ek olarak, bir motor nörorehabilitasyon aracı olarak, tDCS yaygın Parkinson hastalığı, inme tedavisinde kullanılır, ve serebral palsi4. Mevcut kanıtlar geleneksel pad tabanlı tDCS nispeten daha büyük beyinbölgesi5,6,7üzerinden akım akışı üretir göstermektedir. Yüksek tanımlı transkraniyal doğru akım stimülasyonu (HD-tDCS), merkezi halka elektrot dört dönüş elektrotlar8çevrili bir hedef kortikal bölge üzerinde oturan ile,9, dört halka alanları circumscribing tarafından odak artar5,10. Buna ek olarak, HD-tDCS tarafından indüklenen beynin uyarılabilirlik değişiklikleri önemli ölçüde daha büyük büyüklükleri ve geleneksel tDCS tarafından üretilen daha uzun sürelere sahip7,11. Bu nedenle, HD-tDCS yaygın araştırma7kullanılır,11.
Noninvaziv beyin stimülasyonu (NIBS) standart MNI ve Talairach sistemlerinde bir stimülasyon sitesi mevcut olduğundan emin olmak için özel yöntemler gerektirir12. Nöronavigasyon transkraniyal uyaranlar ve insan beyni arasındaki etkileşimleri haritalama sağlayan bir tekniktir. Görselleştirme ve 3D görüntü verileri hassas stimülasyon için kullanılır. Hem tDCS ve HD-tDCS, kafa derisi üzerinde stimülasyon sitelerinin ortak bir değerlendirme genellikle EEG 10-20 sistemi13,14. Bu ölçüm yaygın ilk aşamada fonksiyonel yakın kızılötesi spektroskopi (fNIRS) için tDCS pedleri ve optode tutucuları yerleştirmek için kullanılır13,14,15.
10-20 sistemi kullanırken kesin stimülasyon noktalarının belirlenmesi zor olabilir (örneğin, temporo-parietal kavşakta [TPJ]). Bunu çözmenin en iyi yolu manyetik rezonans görüntüleme (MRG) kullanarak katılımcılardan yapısal görüntüler elde etmek, daha sonra sayısallaştırma ürünleri15kullanarak yapısal görüntüleri hedef noktaları eşleştirerek tam sonda konumu elde etmektir. MRG iyi mekansal çözünürlük sağlar ama15,16,17kullanmak pahalıdır. Ayrıca, bazı katılımcılar (örneğin, metal implantlar, klostrofobik insanlar, hamile kadınlar, vb) MRTarayıcılara tabi tutulamaz. Bu nedenle, yukarıda belirtilen sınırlamaları aşmak ve stimülasyon noktalarının belirlenmesinde doğruluğu artırmak için uygun ve verimli bir yol için güçlü bir ihtiyaç vardır.
Bu protokol, bu sınırlamaları aşmak için bir 3B sayısallaştırıcı kullanır. MRG ile karşılaştırıldığında, 3D sayısallaştırıcının temel avantajları düşük maliyetler, basit uygulama ve taşınabilirliktir. Bireylerin beş referans noktasını (yani Cz, Fpz, Oz, sol preauriküler nokta ve sağ preauriküler nokta) hedef stimülasyon noktalarının konum bilgileriyle birleştirir. Daha sonra, deneğin kafasında elektrotların 3Boyutlu bir konum üretir ve yapısal görüntü12,15geniş veri ile uydurma onların kortikal konumlarını tahmin eder. Bu olasılıksal kayıt yöntemi, bir deneğin manyetik rezonans görüntülerini kaydetmeden MNI koordinat sisteminde transkraniyal haritalama verilerinin sunulmasını sağlar. Yaklaşım anatomik otomatik etiketler ve Brodmann alanları11oluşturur.
3D sayısallaştırıcı, yapısal görüntülerden elde edilen verilere dayanarak uzay koordinatlarını işaretlemek için kullanılan, ilk fNIRS araştırma optodların konumunu belirlemek için kullanılmıştır18. HD-tDCS kullananlar için, bir 3D sayısallaştırıcı EEG 10-20 sisteminin sonlu stimülasyon noktalarını kırar. Dört dönüş elektrodu ve orta elektrotuzak esnektir ve gerektiğinde ayarlanabilir. Bu protokol ile 3D sayısallaştırıcı kullanılarak, 10-20 sisteminin ötesinde olan rTPJ’nin koordinatları elde edildi. Ayrıca insan beyninin doğru temporo-parietal kavşak (rTPJ) hedefleme ve uyarıcı için prosedürler gösterilmiştir.
Geleneksel tDCS ile karşılaştırıldığında, HD-tDCS stimülasyon odak artar. Tipik stimülasyon bölgeleri genellikle 10-20 EEG sistemine dayanır. Ancak, bu sistemin ötesinde kesin stimülasyon noktaları belirlenmesi zor olabilir. Bu kağıt 10-20 sisteminin ötesinde stimülasyon noktaları belirlemek için HD-tDCS ile bir 3D sayısallaştırıcı birleştirir. Bu gibi durumlarda elektrot kapağının yapımı ve kullanılması için gerekli adımları ve önlemleri net bir şekilde tanımlamak önemlidir.
…The authors have nothing to disclose.
Bu çalışma Çin Ulusal Doğa Bilimleri Vakfı (31972906), Chongqing Yurtdışı İade Edilen Akademisyenler için Girişimcilik ve İnovasyon Programı (cx2017049), Merkez Üniversiteler için Temel Araştırma Fonları (SWU1809003), Açık Temel Ruh Sağlığı Laboratuvarı Araştırma Fonu, Psikoloji Enstitüsü, Çin Bilimler Akademisi (KLMH2019K05), Chongqing’de Yüksek Lisans Öğrencisinin Araştırma İnovasyon Projeleri (CYS19117) ve İşbirlikçi İnovasyon araştırma programı fonları Pekin Normal Üniversitesi Temel Eğitim Kalitesine Yönelik Değerlendirme Merkezi (2016-06-014-BZK01, SCSM-2016A2-15003 ve JCXQ-C-LA-1). Prof. Dr. Ofir Türel’e bu makalenin erken taslağı ile ilgili önerileri için teşekkür ederiz.
1X1 Low Intensity transcranial DC Stimulator | Soterix Medical | 1300A | |
3-dimensional Polhemus-Patriot Digitizer | POLHEMUS | 1A0453-001 | PATRIOT system component |
4X1 Multi-Channel Stimulation Interface | Soterix Medical | 4X1-C3 | |
Dell desktop computer | Dell | CRFC4J2 | Master computer to run 3D digitizer application |