Erişkin farelerden gelen akut dilimlerde tek kortikostatal glutamaterjik sinapslarda glutamat salınımı ile açıklık arasındaki dengeyi değerlendirmek için bir protokol sıyoruz. Bu protokol glutamat tespiti için floresan sensör iGluu, sinyal alımı için bir sCMOS kamera ve odak lazer aydınlatma için bir cihaz kullanır.
Sinapslar, birbirleri üzerinde bağımsız olarak çalışan son derece bölümlere ayrılmış fonksiyonel birimlerdir. Huntington hastalığı (HD) ve diğer nörodejeneratif bozukluklar, bu bağımsızlık yetersiz glutamat temizliği ve ortaya çıkan dökülme ve dökülme etkileri nedeniyle tehlikeye olabilir. Presinaptik terminallerin ve/veya dendritik dikenlerin değiştirilmiş astrositik kapsamı nın yanı sıra glutamat salınım bölgelerindeki glutamat taşıyıcı kümelerinin küçültülmesi dis-/hiperkinezi semptomlarına yol gösteren hastalıkların patogenezinde de yer almıştır. Ancak HD’de glutamaterjik sinapsların disfonksiyonuna yol açan mekanizmalar iyi anlaşılamamıştır. Sinaps görüntülemenin iyileştirilmesi ve uygulanması, hareketlerin başlatılmasını engelleyen mekanizmalara yeni Bir ışık yayan veriler elde ettik. Burada, yeni genetik olarak kodlanmış ultra hızlı glutamat sensörü iGluu,geniş alan optik, bilimsel CMOS (sCMOS) kamera, 473 nm lazer ve lazer konumlandırma sistemi kullanarak tek sinaps çözünürlüğü elde etmek için nispeten ucuz bir yaklaşımın temel unsurları nı açıklıyoruz. Glutamat geçici leri, perisynaptic [Glu]’nun çürüme (TauD) zaman sabitinde yansıtıldığı gibi, aktif bölge ve ii) glutamat alımının yanındaki glutamat konsantrasyonunun maksimal yüksekliğine (Glu] dayalı olarak, tek veya birden fazla pikselden i) glutamat salınımı tahminlerini elde etmek için oluşturulmuştur. Dinlendirme bouton boyutundaki farklılıklar ve kısa süreli plastisitenin zıt desenleri, kortikotonsefalik (BT) veya piramidal yol (PT) yoluna ait olarak kortikokostatal terminallerin tanımlanmasında ölçüt görevi görür. Bu yöntemleri kullanarak, pt tipi kortikozorsial sinapsların ~%40’ında semptomatik HD farelerde yetersiz glutamat açıklığı sergilenerek bu sinapsların eksitotoksik hasar riski altında olabileceğini keşfettik. Sonuçlar, hipokinetik fenotipli Huntington farelerinde işlevsiz sinapsların biyomarkeri olarak TauD’un yararlılığının altını çizer.
Bir “üniter bağlantı” ait her sinaptik terminalin göreceli etkisi (yani, 2 sinir hücreleri arasındaki bağlantı) genellikle postsinaptik nöron ilk segmenti üzerindeki etkisi ile değerlendirilir1,2. Postsinaptik nöronlardan somatik ve / veya dendritik kayıtları en yaygın temsil ve, şimdiye kadar, aynı zamanda en verimli bir yukarıdan aşağıya veya dikey perspektif 3 altında bilgi işleme açıklığa kavuşturmak için anlamına gelir3,4,5. Ancak, kendi ayrık ve (kemirgenler) örtüşen olmayan toprakları ile astrositlerin varlığı sinyal değişimi, entegrasyon ve sinaptik sitelerde senkronizasyon yerel mekanizmalar dayalı yatay bir perspektif katkıda bulunabilir6,7,8,9,10.
Astroglia oyun olduğu bilinmektedir çünkü, genel olarak, nörodejeneratif hastalık patogenezinde önemli bir rol11,12 ve, özellikle, bakım ve glutamaterjik sinapsların plastisite bir rol13,14,15,16, bu sinaptik performans değişiklikleri çeşitli lif ile aksesuar lif ortak hedef alanında astrosit durumuna uygun olarak gelişmeye düşünülebilir. Sağlık ve hastalıkta hedef/astroglia kaynaklı yerel düzenleyici mekanizmaları daha fazla araştırmak için, bireysel sinapsların değerlendirilmesi gerekmektedir. Mevcut yaklaşım, fonksiyonel glutamat salınımı ve açıklık göstergelerinin aralığını tahmin etmek ve hareket başlatmaile en yakından ilişkili beyin bölgelerindeki işlevsiz (veya iyileşmiş) sinapsları tanımlamak için kullanılabilecek kriterleri tanımlamak için çalışılmıştır (yani, her şeyden önce motor korteks ve dorsal striatumda).
Striatum içsel glutamaterjik nöronlar yoksun. Bu nedenle, ekstrastriatal kökenli glutamaterjik afferents belirlemek nispeten kolaydır. İkincisi çoğunlukla medial talamus ve serebral korteks kökenli(bkz. 17,18,19,20 daha fazlası için). Kortikotoriatal sinapslar kortikal tabakalarda lokalize piramidal nöronların aksonlar tarafından oluşur 2/3 ve 5. İlgili aksonlar, piramidal yolu (PT) oluşturan bir lif sistemi aracılığıyla ikili intra-telensefalik (IT) bağlantıları veya ipsilateral bağlantılar oluştururlar. Ayrıca BT ve PT tipi terminallerin sürüm özellikleri ve boyutu21,22farklı olduğu ileri sürülmüştür. Bu veriler göz önüne alındığında, bir de glutamat kullanımı bazı farklılıklar bekleyebilirsiniz.
Striatum Huntington hastalığı en çok etkilenen beyin alanıdır (HD)5. İnsan HD ciddi bir genetik kalıtsal nörodejeneratif bozukluktur. Q175 fare modeli HD hipokinetik-sert formu hücresel temelini araştırmak için bir fırsat sunuyor, parkinsonizm ile çok ortak bir devlet. Yaklaşık 1 yaşında başlayan, homozigot Q175 fareler (HOM) hipokinezya belirtileri sergiler, açık bir alanda hareket olmadan harcanan zaman ölçerek ortaya23. Heterozigot Q175 fareler (HET) ile mevcut deneyler HOM gözlenen önceki motor açıkları doğruladı ve ek olarak, gözlenen motor açıkları astrositik eksitatif amino asit taşıyıcı 2 protein (EAAT2) kortikostrital sinaptik terminalleri yakın çevresinde azaltılmış bir düzeyde eşlik ettiğini gösterdi24. Bu nedenle astrositik glutamat alımı bir açığı disfonksiyon ya da ilgili sinapsların bile kaybına yol açabilir hipotez olmuştur25,26.
Burada, serbest nörotransmitter miktarına göre tek sinaps glutamat açıklık değerlendirmek için izin veren yeni bir yaklaşım açıklar. Yeni glutamat sensörü iGluu kortikostal piramidal nöronlarda ifade edildi. Katalin Török27 tarafından geliştirilen ve daha önce tanıtılan yüksek yakınlık ama yavaş glutamat sensörü iGluSnFR28bir değişiklik temsil eder. Her iki sensör de gelişmiş yeşil floresan proteinin (EGFP) türevleridir. Spektral ve kinetik özellikler için helassa ve ark.27’yebakınız. Kısaca, iGluu hızlı de-aktivasyon kinetik ile düşük afinite sensörü ve bu nedenle özellikle iyi glutamat serbest sinaptik terminallerde glutamat açıklık çalışmak için uygundur. iGluu’nun dissosilasyon süresi sabiti, 20 °C’de tau’yu 2,1 ms, 34 °C27sıcaklıkta tahmin edildiğinde 0,68 ms’lik bir değere sahip bir durmuş akış cihazında belirlenmiştir.off 2-foton mikroskop altında organotipik hipokampal kültürlerin CA1 bölgesinde spiral lazer taraması ile 34 °C’de incelenen tek Schaffer teminat terminalleri, ortalama 2,7 ms’lik bir çürüme süresi sergiledi.
Deneyler genel ilgi ile ilgili bir soru – sinaps bağımsızlığı ve nörodejenerasyon seyrinde olası kaybı, ve biz yaşlı (>1 yıl) fareler akut beyin dilimlerietkilenen sinapsları belirlemek için yeni bir yaklaşım açıklar. Son zamanlarda tanıtılan glutamat sensörü iGluu gelişmiş kinetik özellikleri yararlanarak deneyler sinaptik glutamat salınımı ve alımı arasındaki ilişkiyi daha önce mümkün olmamıştır bir şekilde aydınlatmak.
Glutamat temizliğini…
The authors have nothing to disclose.
Bu çalışma CHDI (A-12467), Alman Araştırma Vakfı (Exc 257/1 ve DFG Project-ID 327654276 – SFB 1315) ve Charité intramural Araştırma Fonları tarafından desteklenmiştir. K. Török, St. George’s, Londra Üniversitesi ve Liverpool Üniversitesi N. Helassa’ya iGluu plazmid ve birçok yararlı tartışma için teşekkür ederiz. D. Betances ve A. Schönherr mükemmel teknik yardım sağladı.
Stereo microsope | WPI | PZMIII | Precision Stereo Zoom Binocular Microscope |
Stereotaxic frame | Stoelting | 51500D | Digital Lab New Standard stereotaxic frame |
High speed drill equipment | Stoelting | 514439V | Foredom K1070 cromoter Kit |
Injection system | Stoelting | 53311 | Quintessential Stereotaxic Injector (QSI) |
Hamilton syringe 5 µl | Hamilton | 87930 | 75RN Syr (26s/51/2) |
Laser positioning system | Rapp OptoElectronic | UGA-40 | UGA-40 |
Blue laser for iGluu excitation | Rapp OptoElectronic | DL-473-020-S | 473 nm laser |
Dichroic mirror for 473 nm | Rapp OptoElectronic | ROE TB-355-405-473 | Dichroic |
1P upright microscope | Carl Zeiss | 000000-1066-600 | Axioskop 2 FS Plus |
Objective 63x/1.0 | Carl Zeiss | 421480-9900 | W Plan-Apochromat |
4x objective | Carl Zeiss | 44-00-20 | Achroplan 4x/0,10 |
Dichroic mirror for iGluu | Omega optical | XF2030 | |
Emission filter for iGluu | Omega optical | XF3086 | |
Dichroic mirror | Omega optical | QMAX_DI580LP | |
Emission filter for autofluorescence subtr. | Omega optical | QMAX EM600-650 | |
sCMOS camera | Andor | ZYLA4.2PCL10 | ZYLA 4.2MP Plus |
Acqusition software | Andor | 4.30.30034.0 | Solis |
AD/DA converter | HEKA Elektronik | 895035 | InstruTECH LIH8+8 |
Aquisition software | HEKA Elektronik | 895153 | TIDA5.25 |
Electrode positioning system | Sutter Instrument | MPC-200 | Micromanipulator |
Electrical stimulator | Charite workshops | STIM-26 | |
Slicer | Leica | VT1200 S | Vibrotome |
Brown/Flaming-type puller | Sutter Instr | SU-P1000 | P-1000 |
Glass tubes for injection pipettes | WPI | 1B100F3 | |
Glass tubes forstimulation pipettes | WPI | R100-F3 | |
Tetrodotoxin | Abcam | ab120054 | TTX |
iGluu plasmid | Addgene | 106122 | pCI-syn-iGluu |
Q175 mice | Jackson Lab | 27410 | Z-Q175-KI |