Summary

使用基于循环 RT-PCR 的策略对玉米 Mitochondrion 中初级和已处理转录的区分和映射

Published: July 29, 2019
doi:

Summary

通过结合循环RT-PCR、定量RT-PCR、RNA 5’聚磷酸酶处理和北方斑点,提出了基于RT-PCR的循环RT-PCR策略。该协议包括一个标准化步骤,以尽量减少不稳定5’三磷酸酯的影响,它适用于对玉米线粒体中稳定积累的初级和加工转录转录进行鉴别和映射。

Abstract

在植物线粒体中,一些稳态转录本具有从转录启动(主转录)衍生的5’三磷酸盐,而其他含有5’单磷酸盐产生的转录后(处理转录)。为了区分这两种类型的成绩单,已经制定了几种策略,其中大多数取决于存在/缺少5’三磷酸盐。然而,小学5年级的三磷酸盐是不稳定的,它阻碍了对两种类型的抄本的明显区分。为了系统地区分和绘制玉米线粒体中稳定积累的初级和加工转录本,我们开发了基于CRT-PCR(cRT-PCR)的循环RT-PCR(cRT-PCR)策略,将cRT-PCR、RNA 5’多磷酸酶处理、定量RT-PCR (RT-qPCR) 和北方污点。作为改进,该策略包括RNA正常化步骤,以尽量减少不稳定的5’三磷酸盐的影响。

在此协议中,富集线粒体RNA由RNA 5’聚磷酸酶预处理,将5’三磷酸酯转化为单磷酸盐。经过循环和逆转录后,从5’聚磷酸酶处理和未处理RNA衍生的两种cDNA由玉米26S成熟rRNA归一化,其加工为5’结束,对5’聚磷酸酶不敏感。规范化后,通过比较从处理过的和未经处理的RNA获得的cRT-PCR和RT-qPCR产物,对初级和加工的转录本进行区分。转录端验通过cRT-PCR产物的克隆和测序确定,然后由北方印块验证。

通过采用这一策略,确定了玉米线粒体中大多数稳态记录。由于一些线粒体基因的转录模式复杂,一些稳态转录图没有被区分和/或映射,尽管它们是在北方的污点中检测到的。我们不确定此策略是否适合在其他植物线粒体或石膏中区分和映射稳态记录。

Introduction

在植物线粒体中,许多成熟和前体RNA作为多种等形体积累,稳定状态转录法可以根据其5’末端1、2、3的差异被分成组。 4.主转录有5’三磷酸盐末端,从转录启动派生。相比之下,经过处理的转录本具有5’单磷酸盐,通过转录后处理产生。两种类型的转录本的鉴别和映射对于解开转录和转录结束成熟的分子机制非常重要。

为了区分植物线粒体的主要转录和加工记录,已经开发了四个主要策略。第一种策略是用烟草酸焦磷酸酶(TAP)预处理线粒体RNA,将5’三磷酸盐转化为单磷酸盐,并使初级转录本通过RNA连带循环。然后通过快速扩增cDNA端(RACE)或圆形RT-PCR(cRT-PCR)2、3、4,比较TAP处理和未处理RNA样本的转录量。在第二种策略中,处理的转录本首先从线粒体RNA中耗尽,使用终结器5′-磷酸盐依赖外糖酶(TEX),然后通过引世扩展分析5,6映射所剩的主要转录本.第三种策略是使用甘蓝转移酶预盖初级转录,然后三磷酸盐5’termini的位置由引基延伸与核糖酸酶或S1核酸酶保护分析7,8确定 ,9.与基于5’三磷酸的存在/不存在的不同,第四种策略结合了体外转录、位点定向诱变和引物延伸分析,以表征启动子并确定转录启动站点8,10,11。通过使用这些策略,许多主要和经过处理的转录本在植物线粒体中已经确定。

然而,一些研究报告说,原发转录的5’三磷酸盐是不稳定的,他们很容易转换为单磷酸盐不明的原因2,4,12,13。这个问题阻碍了对两种类型的成绩单的明确区分,因为使用技术取决于存在/缺少 5′ 三磷酸,以及以前在工厂中系统地区分初级记录和加工抄本的努力线粒体失败2,12。

在此协议中,我们将cRT-PCR、RNA 5’聚磷酸酶处理、RT-qPCR和北方斑点相结合,系统地区分玉米(ZeaMays)线粒体中稳态积累的初级和加工转录(图1)。cRT-PCR允许同时映射RNA分子的5’和3’的四肢,它通常适应在植物2,12,14,15的图谱抄本术语。RNA 5′ 聚磷酸酶可以从三磷酸盐5’特尼中去除两种磷酸盐,这使得主转录本可用于RNA连结酶的自我结扎。先前的研究表明,玉米中成熟的26S rRNA已经加工了5’终点,对RNA5’聚磷酸酶1,16)不敏感。为了将不稳定的三磷酸盐对原发5’特尼的影响降至最低,5’聚磷酸酶处理和未处理RNA通过成熟的26S rRNA进行归一化,然后通过比较来区分原发和加工的转录本。从两个RNA样本中获得的cRT-PCR产物。cRT-PCR映射和鉴别结果分别由北方印子和RT-qPCR验证。最后,使用替代引液来放大在北方污点中检测到的转录本,而不是通过cRT-PCR检测到的。通过这种基于cRT-PCR的策略,对玉米线粒体中大多数稳态转录被区分和映射为1。

Protocol

1. 底漆设计 根据引物设计的一般规则,使用PCR引物设计软件(材料表)设计逆转录(RT)基因专用引物。注:RT 引录对目标转录本非常具体,它们通常固定在编码序列的 5′ 部分(成熟的 mRNA 和前体 RNA),或预计的 5′ 端 (18S 和 26S rRNA)的下游 ±500–600 nt。 设计发散引基对,通过cRT-PCR放大循环转录。注:成对发散引引在循环转录本的5′-3’结侧侧,它们的?…

Representative Results

线粒体RNA循环效率估计 在以前的研究中,总和线粒体RNA都用于cRT-PCR映射线粒体转录在阿拉伯拉多普西斯(阿拉伯拉多普西斯)的线粒体转录终点,两种类型的RNA给出了类似的映射结果12。最初,我们还使用总RNA在玉米中线粒体转录终点的cRT-PCR映射。经过多次试验,我们发现目标记录很难被?…

Discussion

在先前的研究中,利用阿拉伯多普西细胞悬浮培养的组蛋白和线粒体RNA,用cRT-PCR绘制线粒体转录终点,结果相似,获得12.然而,在许多其他研究中,只有富集线粒体RNA被用于绘制线粒体转录终点尼的图谱。研究发现,线粒体RNA的富集是玉米中线粒体转录终点的cRT-PCR映射的重要一步。在?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(授权号31600250,Y.Z.)、广州市科技项目(批号201804020015,H.N.)和中国农业研究系统(批号No.S.)的支持。CARS-04-PS09,H.N.)。

Materials

Acetic acid Aladdin, China A112880 To prepare 1x TAE buffer
Applied Biosystems 2720 Thermal Cycler Thermo Fisher Scientific, USA 4359659 Thermal cycler for PCR amplification
Ascorbic acid Sigma-aldrich, USA V900134 For preparation of extraction buffer
Biowest Agarose Biowest, Spain 9012-36-6 To resolve PCR products and RNAs
Bovine serum albumin Sigma-aldrich, USA A1933 For preparation of extraction buffer
Bromophenol blue Sigma-aldrich, USA B8026 For preparation of loading buffer for agarose gel electrophoresis and Northern blot
DEPC Sigma-aldrich, USA V900882 Deactivation of RNase
DIG Northern starter kit Roche, USA 12039672910 For DIG-RNA labeling and Northern blot. This kit contains the reagents for transcription-labeling of RNA with DIG and T7 RNA polymerase, hybridization and chemiluminescent detection.
EDTA Sigma-aldrich, USA V900106 For preparation of extraction buffer and 1x TAE buffer
EGTA Sigma-aldrich, USA E3889 For preparation of wash buffer
Gel documentation system Bio-Rad, USA Gel Doc XR+ To image the agarose gel
Glycerol Sigma-aldrich, USA G5516 For preparation of loading buffer for agarose gel electrophoresis
GoldView II (5000x) Solarbio,. China G8142 DNA staining
Hybond-N+, Nylon membrane Amersham Biosciences, USA RPN119 For Northern blot
Image Lab Bio-Rad, USA Image Lab 3.0 Image gel, and compare the abundance of PCR products.
KH2PO4 Sigma-aldrich, USA V900041 For preparation of extraction buffer
KOH Aladdin, China P112284 For preparation of extraction buffer
L-cysteine Sigma-aldrich, USA V900399 For preparation of extraction buffer
Millex Millipore, USA SLHP033RB To sterile extraction and wash buffers by filtration
Miracloth Calbiochem, USA 475855-1R To filter the ground kernel tissues
MOPS Sigma-aldrich, USA V900306 For preparation of running buffer for Northern blot
NanoDrop Thermo Fisher Scientific, USA 2000C For RNA concentration and purity assay
NaOH Sigma-aldrich, USA V900797 For preparation of wash buffer
pEASY-Blunt simple cloning vector TransGen Biotech, China CB111 Cloning of the gel-recovered band. It contains a T7 promoter several bps upstream of the insertion site.
Phanta max super-fidelity DNA polymerase Vazyme, China P505 DNA polymerase for PCR amplification
Polyvinylpyrrolidone 40 Sigma-aldrich, USA V900008 For preparation of extraction buffer
Primer Premier 6.24 PREMIER Biosoft, USA Primer Premier 6.24 To design primers for reverse transcription and PCR amplification
PrimeScript II reverse transcriptase Takara, Japan 2690 To synthesize the first strand cDNA
PureLink RNA Mini kit Thermo Fisher Scientific, USA 12183025 For RNA purificaion
RNA 5' polyphosphatase Epicentre, USA RP8092H To convert 5' triphosphate to monophosphate
RNase inhibitor New England Biolabs, UK M0314 A component of RNA self-ligation and 5' polyphosphatase treatment reactions, and it is used to inhibite the activity of RNase.
Sodium acetate Sigma-aldrich, USA V900212 For preparation of running buffer for Northern blot
Sodium chloride Sigma-aldrich, USA V900058 To prepare 20x SSC
SsoFas evaGreen supermixes Bio-Rad, USA 1725202 For RT-qPCR
T4 RNA Ligase 1 New England Biolabs, UK M0437 For RNA circularization
Tetrasodium pyrophosphate Sigma-aldrich, USA 221368 For preparation of extraction buffer
TIANgel midi purification kit Tiangen Biotech, China DP209 To purify DNA fragments from agarose gel
Tris Aladdin, China T110601 To prepare 1x TAE buffer
TRIzol reagent Invitrogen, USA 15596026 To extract mitochondiral RNA.
Universal DNA purification kit Tiangen Biotech, China DP214 To recover linearized plastmids from the restriction enzyme digestion reaction
Xylene cyanol FF Sigma-aldrich, USA X4126 For preparation of loading buffer for agarose gel electrophoresis

References

  1. Zhang, Y., et al. Major contribution of transcription initiation to 5'-end formation of mitochondrial steady-state transcripts in maize. RNA Biology. 16 (1), 104-117 (2019).
  2. Choi, B. Y., Acero, M. M., Bonen, L. Mapping of wheat mitochondrial mRNA termini and comparison with breakpoints in DNA homology among plants. Plant Molecular Biology. 80 (4-5), 539-552 (2012).
  3. Calixte, S., Bonen, L. Developmentally-specific transcripts from the ccmFN-rps1 locus in wheat mitochondria. Molecular Genetics and Genomics. 280 (5), 419-426 (2008).
  4. Kuhn, K., Weihe, A., Borner, T. Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Research. 33 (1), 337-346 (2005).
  5. Jonietz, C., Forner, J., Holzle, A., Thuss, S., Binder, S. RNA PROCESSING FACTOR2 is required for 5′ end processing of nad9 and cox3 mRNAs in mitochondria of Arabidopsis thaliana. ThePlant Cell. 22 (2), 443-453 (2010).
  6. Stoll, B., Stoll, K., Steinhilber, J., Jonietz, C., Binder, S. Mitochondrial transcript length polymorphisms are a widespread phenomenon in Arabidopsis thaliana. Plant Molecular Biology. 81 (3), 221-233 (2013).
  7. Mulligan, R. M., Lau, G. T., Walbot, V. Numerous transcription initiation sites exist for the maize mitochondrial genes for subunit 9 of the ATP synthase and subunit 3 of cytochrome oxidase. Proceedings of the National Academy of Sciences of the United States of America. 85 (21), 7998-8002 (1988).
  8. Lupold, D. S., Caoile, A. G., Stern, D. B. The maize mitochondrial cox2 gene has five promoters in two genomic regions, including a complex promoter consisting of seven overlapping units. Journal of Biological Chemistry. 274 (6), 3897-3903 (1999).
  9. Yan, B., Pring, D. R. Transcriptional initiation sites in sorghum mitochondrial DNA indicate conserved and variable features. Current Genetics. 32 (4), 287-295 (1997).
  10. Rapp, W. D., Lupold, D. S., Mack, S., Stern, D. B. Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Molecular and Cellular Biology. 13 (12), 7232-7238 (1993).
  11. Rapp, W. D., Stern, D. B. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. The EMBO Journal. 11 (3), 1065-1073 (1992).
  12. Forner, J., Weber, B., Thuss, S., Wildum, S., Binder, S. Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Research. 35 (11), 3676-3692 (2007).
  13. Binder, S., Stoll, K., Stoll, B. Maturation of 5′ ends of plant mitochondrial RNAs. Physiologia Plantarum. 157 (3), 280-288 (2016).
  14. Hang, R. L., Liu, C. Y., Ahmad, A., Zhang, Y., Lu, F. L., Cao, X. F. Arabidopsis protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing. Proceedings of the National Academy of Sciences of the United States of America. 111 (45), 16190-16195 (2014).
  15. Wang, H. Q., et al. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytologist. 218 (3), 1233-1246 (2018).
  16. Maloney, A. P., et al. Identification in maize mitochondrial 26S rRNA of a short 5′-end sequence possibly involved in transcription initiation and processing. Current Genetics. 15 (3), 207-212 (1989).
  17. Green, R. M., Sambrook, J. . Molecular Cloning: A Laboratory Manual. , (2012).
  18. Canino, G., et al. Arabidopsis encodes four tRNase Z enzymes. Plant Physiology. 150 (3), 1494-1502 (2009).
  19. Gobert, A., et al. A single Arabidopsis organellar protein has RNase P activity. Nature Structural, Molecular Biology. 17, 740-744 (2010).
  20. Gutmann, B., Gobert, A., Giege, P. PRORP proteins support RNase P activity in both organelles and the nucleus in Arabidopsis. Genes & Development. 26 (10), 1022-1027 (2012).
  21. Stern, D. B., Goldschmidt-Clermont, M., Hanson, M. R. Chloroplast RNA metabolism. Annual Review of Plant Biology. 61, 125-155 (2010).

Play Video

Cite This Article
Zhang, Y., Liao, X., Luo, P., Peng, K., Ye, W., Lian, T., Ma, Q., Nian, H. Discrimintion and Mapping of the Primary and Processed Transcripts in Maize Mitochondrion Using a Circular RT-PCR-based Strategy. J. Vis. Exp. (149), e60019, doi:10.3791/60019 (2019).

View Video