この記事では、周囲質量分析に基づく独自のリアルタイム分析方法のサンプル調製方法を紹介します。この方法により、特別な前処理を行うことなく生体内の生体分子のリアルタイム分析を行うことができます。
質量分析(MS)は、分子量や構造を推測するのに役立つ質量電荷比(m/z)など分子に関する非常に正確な情報を提供するため、分析化学において強力なツールです。それは本質的に破壊的な分析方法ですが、最近の周囲イオン化技術の進歩により、組織は完全性の面で比較的無傷の状態に置かれながらデータを取得することができました。プローブ電気スプレーイオン化(PESI)は、サンプルの複雑で時間のかかる前処理を必要としないため、いわゆる直接法です。細かい針は、サンプルピッカーだけでなく、イオン化エミッタとして機能します。プローブ先端の非常に鋭く微細な性質に基づいて、サンプルの破壊は最小限であり、その場で生き物からリアルタイムの分子情報を取得することができます。ここでは、生物医学の研究開発に役立つPESI-MS技術の3つの用途を紹介します。一つは、医学診断のためのこの技術の基本的なアプリケーションである固体組織への適用を含みます。この技術は、サンプルの10mgのみを必要とするので、ルーチン臨床設定において非常に有用であり得る。第二のアプリケーションは、人間の血清が測定される体外医療診断用です。また、従来の分析技術に十分な量のサンプルが提供できない様々な生物学的実験においても、流体試料を測定する能力は重要である。第3のアプリケーションは、特定の器官における代謝産物または薬物のリアルタイムダイナミクスを得ることができる生きている動物におけるプローブ針の直接適用に傾いている。各アプリケーションでは、MSによって検出された分子を推測したり、人工知能を使用して医学的診断を得ることができます。
質量分析法(MS)は、還元主義の技術的実現である。これは、分子種やカスケードに基づいて解釈することができる単位に分析の対象を減少させます。従って、分析化学の代表的な方法である。イオン化、解析、検出、スペクトル集録の4つのプロセスで構成されています。分子のイオン化は質量分析の最初のプロセスであるため、一般的に処理される検体の形態を制限する。ほとんどのイオン化手順では、有機サンプルの構造、形態、およびリアルタイムの生物学的プロセスの破壊が必要です。例えば、エレクトロスプレーイオン化(ESI)MSは、サンプルが効率的なイオン化のために液体状態にあることを必要とする1。したがって、サンプルは、分子の組成を変化させる複雑な生化学的調製物を通過する必要があります。あるいは、マトリクス支援レーザー脱離イオン化(MALDI)MSは薄い切片組織2,3の分子マップを再構築できるが、そのイオン化効率が低すぎてサンプル中のすべての分子を検出できない、特に脂肪酸の分析が不十分である。これらの制限を考慮すると、プローブエレクトロスプレーイオン化(PESI)4は、構造完全性5を破壊することなく、その生体系のリアルタイム変化を観察するために使用することができるが、観察されている生物は技術的に生きている状態にある。この場合、非常に細かい針が使用され、サンプルピッカーとイオンエミッタとして同時に機能します。これは、複雑なサンプル前処理配列をバイパスして、リビングシステムの分子成分をその場で反射する質量スペクトルを得ることができることを意味します。
PESI-MSに匹敵する他のいくつかの電イオン化方法があります。1つは急速な蒸発イオン化質量分析(REIMS)6です。この技術は、電気ナイフで組み立てられ、切開中に発生するイオンプルームを収集するため、手術中にうまく機能します。REIMSは手術に非常に有用であるが、それは本質的に組織の電気的なアブレーションを必要とする破壊的な方法である。したがって、分離サンプルまたは実験室での分析において、細胞および組織の詳細な分析には有用ではありません。さらに、組織の破片を含むプルームを大量に収集するため、使用後の装置のメンテナンスが長く必要となり、この機械の使用を特別な手術に限定します。同様の方法は、レーザー脱離イオン質量分析(LDI-MS)7と呼ばれ、非侵襲的で表面分析に有用なもう1つの技術である。この技術は試料の表面をスキャンするのが得意なので、MALDIイメージング質量分析8、9のような包括的な2次元解析を実現します。しかし、LDI-MSは表面分析にのみ適用可能であるため、PESI-MSは、例えば、組織内のサンプルを分析する上で有利である。もう一つの技術であるMasSpec Pen10は、甲状腺癌の診断において高い特異性および感受性を達成すると報告されたが、プローブの直径はmmのオーダーであり、表面分析に特異的であり、癌の小さな結節または深く局在化した病変を検出できないことを意味する。さらに、この方法はプローブペンに埋め込まれたマイクロキャピラリー流路を使用するので、LDI-MSと同様にクロスコンタミネーションを考慮する必要があります。他にも、フロープローブやイオン化形態スワブ11などの臨床現場に適用された技術が存在するが、それらは広く普及していない。
PESIはESIの極端な微細化であり、ナノエレクトロスプレーの毛細管は数百nmの先端湾曲半径を有する固体針上に収束する。イオン化は、テーラーコーンを形成することにより針先の極めて制限された領域で起こり、その上で試料は先端上のすべての流体のイオン化が完了するまで12に留まる。検体が金属針の先端にとどまっている場合、金属針と検体の間の界面で過剰な電荷が連続的に発生する。そのため、分子の逐次イオン化は、その表面活性に応じて生じる。このプロパティは、針先をクロマトグラムの一種にし、表面の活性に応じて検体を分離します。より技術的には、より強い表面活性を有する分子は、テイラーコーンの表面に来て、イオン化プロセスの終わりまで針の表面に付着する弱い表面活性を有するものよりも早くイオン化される。これにより、針によって拾われたすべての分子の完全なイオン化が達成される13。また、この技術は、試料に余分な溶媒を添加することを伴わないので、数百個のフェムトリットルは、さらに分析14のために十分な強さの質量スペクトルを得るのに十分である。これらの特性は、無傷の生物学的試料の分析に有利である。しかし、PESI-MSの大きな欠点は、ソーイングマシンと同様に、垂直軸に沿った針の往復運動のためにイオン化の不連続性にある。イオン化は、イオンオリフィスの高さが横軸上に揃っているときにプローブの先端が最も高い点に達した場合にのみ起こる。針がサンプルを拾っている間イオン化は止まるので、イオン化の安定性は従来のESIと等しくない。したがって、PESI-MSはプロテオミクスにとって理想的な方法ではありません。
これまで、PESI-MSは主に生体システムの分析に応用されており、基礎研究から臨床現場まで幅広い分野をカバーしています。例えば、手術中に調製されたヒト組織の直接分析により、腎細胞癌15および咽頭扁平上皮癌16の両方におけるトリアシルグリセロールの蓄積を明らかにすることができた。この方法はまた、血液などの液体試料を測定し、脂質プロファイルに焦点を当てることができる。例えば、いくつかの分子は、ウサギの食事の変化の間に線引きされています。これらの分子の一部は実験の非常に初期段階で減少し、臨床診断のためのこのシステムの高感度および有用性を示す17.さらに、生きている動物への直接適用は、断食5のちょうど一晩後に肝臓の生化学的変化の検出を可能にした。Zaitsu et al.18は、この実験5を再検討し、ほぼ同じ方法で肝臓の代謝プロファイルを分析し、その結果、当社の元の方法の安定性と再現性を強化した。さらに、この技術19を用いてマウスの非癌性肝を取り囲む癌組織を判別することができた。従って、これは、生体内とインビトロの両方の様々な設定で有用である汎用性の高い質量分析技術である。別の観点から、PESIモジュールは、取り付けアタッチメントを調整することによって、様々な質量分析計に適合させることができます。この短い記事では、生きている動物を使ったアプリケーションを含むアプリケーションの基礎と例 (図 1)を紹介します。
各国の規制や法律に従って、このプロトコルの一部は、各機関の基準を満たす必要があります。生物への応用は、生きている動物の組織や器官の生化学的または代謝的変化をその場所で提供することができるため、最も興味深く、困難です。この申請は山梨大学の動物ケア機関委員会によって承認されましたが、2013年5月には、動物実験の規制の最近の変更により、もう一度承認が必要になります。実験計画の幾つかの修正が推奨される。実験で得られた質量スペクトルに関しては、各測定間の質量スペクトルの変動を考慮して、ヌクレオチドシーケンシングコミュニティに共通するスペクトル情報共有システムはありません。特に針ホルダーから針を取り外す場合は、針の事故を避けるために、オペレータが針を取り扱う際には注意が必要です。針を取り外す特別な装置は、この目的のために非常に有用である。PESIモジュールのコンパートメントは気密、閉室、質量分析計が指示に従って作動した場合にイオンプルームの漏れは発生しない。
PESIは質量分析4のESIの誘導体であるが、リアルタイムメタボロミクスをモニタリングする場合、ならびに複雑または時間のかかる前処理を行わずに生化学的反応を分析する場合に最も有利である5、14、15、17。生物の統合状態に適用できる、簡単で瞬時の質量分析技術です。サン?…
The authors have nothing to disclose.
PESI-MSと澤の堀和子の秘書の援助を運営してくれた飯塚あゆみさんに感謝します。この原稿の草稿を編集してくれたエダンツ・グループ(www.edanzediting.com/ac)のブロンウェン・ガードナー博士に感謝します。
5-Fluoro-2'-deoxyuridine (5-FdU) | Sigma-Aldrich | F8791-25MG | 25mg |
disposable biposy punch (Trepan) | kai Europa GmbH | BP-30F | bore size 3mm |
ethanol | nacalai tesque | 14710-25 | extra pure reagent |
LabSolutions | Shimadzu | ver. 5.96, Data analyzer | |
micropestle | United Scientific Supplies | S13091 | |
microtube | Treff | 982855 | 0.5 mL clear |
PESI-MS (Direct Probe Ionization-MS) | Shimadzu | DPiMS-2020 | Mass spectrometer equipped with PESI |
PPGT solition | Shimadzu | ND | Attached to DPiMS-2020 |