Summary

设计和使用用于在 3D 工作区中呈现可抓握对象的设备

Published: August 08, 2019
doi:

Summary

这里介绍的是一个协议,用于构建一个自动设备,用于引导猴子执行灵活的到达式任务。该装置结合了 3D 平移装置和车削表,在 3D 空间中的任意位置呈现多个对象。

Abstract

达到和把握是高度耦合的运动,其潜在的神经动力学在过去十年中被广泛研究。为了区分到达和把握编码,必须显示不同的对象标识,而与它们的位置无关。这里介绍了一个自动设备的设计,组装与车削表和三维(3D)平移设备,以实现这一目标。车削表切换与不同夹点类型对应的不同对象,而 3D 平移设备在 3D 空间中传输车削表。两者都由电机独立驱动,因此目标位置和对象被任意组合。同时,手腕轨迹和握持类型分别通过运动捕捉系统和触摸传感器进行记录。此外,还介绍了使用该系统成功训练的猴子的代表性结果。预计该装置将有助于研究人员研究与上肢功能相关的运动学、神经原理和脑机界面。

Introduction

已经开发出各种仪器来研究非人类灵长类动物到达和把握运动背后的神经原理。在执行任务时,触摸屏1,2,屏幕光标由操纵杆3,4,5,6,7和虚拟现实技术8控制,9,已分别使用10个用于提出 2D 和 3D 目标。为了引入不同的夹持类型,固定在一个位置或围绕轴旋转的不同形状的物体被广泛应用于抓握任务11、12、13中。另一种选择是使用视觉提示来通知受试者用不同的抓地力类型14、15、16、17抓住同一物体。最近,到达和把握运动一起研究(即,受试者在实验环节中达到多个位置,用不同的抓地力类型进行握握)18、19、20 21,22,23,24,25,26,27,28,29。早期的实验已经提出对象手动,这不可避免地导致低时间和空间精度20,21。为了提高实验精度,节省人力,程序控制的自动演示装置得到了广泛的应用。为了改变目标位置和夹点类型,实验者同时暴露了多个对象,但目标的相对(或绝对)位置和夹点类型绑定在一起,通过长期训练导致刚性射击模式22 ,27,28.物体通常呈现在2D平面上,这限制了到达运动和神经活动的多样性19,25,26。最近,虚拟现实24和机器人臂23,29被引入到3D空间的呈现对象。

这里介绍了用于构建和使用自动化设备30的详细协议,该装置可在 3D 空间中实现多个目标位置和夹持类型的任意组合。我们设计了一个车削台来切换物体和3D平移设备,以在3D空间中传输车削台。车削台和平移装置均由独立电机驱动。同时,在整个实验中同时记录受试者手腕和神经信号的三维轨迹。该装置为研究风河猴上肢功能提供了宝贵的平台。

Protocol

所有行为和外科手术均符合《实验室动物护理和使用指南》(中国卫生部),并经中国浙江大学动物护理委员会批准。 1.组装3D翻译设备 使用铝制结构导轨(横截面:40 mm x 40 mm)构建尺寸为 920 mm x 690 mm x 530 mm 的框架。 用螺钉 (M4) 固定到 Y 导轨两端的四个底座(图1B)。 用螺钉 (M6) 将四个底座固定到顶部表面的四个角上,从而将两个 Y 形导轨?…

Representative Results

设备的完整工作空间尺寸分别为 600 mm、300 mm 和 500 mm(x 轴、y 轴和 z 轴)。3D 平移装置的最大负载为 25 kg,而车削台(包括步进电机)的加权重量为 15 kg,可以高达 500 mm/s 的速度运输。3D平移装置的运动精度小于0.1毫米,器件噪声小于60分贝。 为了证明系统的效用,猴子被训练(以前在到达任务中训练),用系统30完成延迟的到达抓握任务。使用上面介绍的过程,范例软件自…

Discussion

此处描述的行为装置允许不同到达和抓握运动的试用组合(即,猴子可以在每次试验中的任何任意 3D 位置抓住不同形状的物体)。这是通过切换不同对象的自定义车削表和将车削表传输到 3D 空间中的多个位置的线性平移设备的组合来实现的。此外,猴子的神经信号、手腕轨迹和手形能够被记录和同步用于神经生理学研究。

该装置包括单独驱动的3D平移装置和车削表,独立呈现多个?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢沈世江先生对仪器设计的建议,感谢王桂华女士在动物护理和培训方面给予的帮助。这项工作得到了国家重点研究发展计划(2017YFC1308501)、国家自然科学基金(31627802)、浙江省公共项目(2016C33059)和基础研究基金的支持。中央大学。

Materials

Active X-rail CCM Automation technology Inc., China W50-25 Effective travel, 600 mm; Load, 25 kg
Active Y-rail CCM Automation technology Inc., China W60-35 Effective travel, 300 mm, Load 35 kg
Active Z-rail CCM Automation technology Inc., China W50-25 Effective travel, 500 mm; Load 25 kg
Bearing Taobao.com 6004-2RSH Acrylic
Case Custom mechanical processing TT-C Acrylic
Connecting ring CCM Automation technology Inc., China 57/60-W50
Connecting shaft CCM Automation technology Inc., China D12-700 Diam., 12 mm;Length, 700 mm
Diaphragm coupling CCM Automation technology Inc., China CCM 12-12 Inner diam., 12-12mm
Diaphragm coupling CCM Automation technology Inc., China CCM 12-14 Inner diam., 14-12mm
Electric slip ring Semring Inc., China SNH020a-12 Acrylic
Locating bar Custom mechanical processing TT-L Acrylic
Motion capture system Motion Analysis Corp. US Eagle-2.36
Neural signal acquisition system Blackrock Microsystems Corp. US Cerebus
NI DAQ device National Instruments, US USB-6341
Object Custom mechanical processing TT-O Acrylic
Passive Y-rail CCM Automation technology Inc., China W60-35 Effective travel, 300 mm; Load 35 kg
Passive Z-rail CCM Automation technology Inc., China W50-25 Effective travel, 500 mm; Load 25 kg
Pedestal CCM Automation technology Inc., China 80-W60
Peristaltic pump Longer Inc., China BT100-1L
Planetary gearhead CCM Automation technology Inc., China PLF60-5 Flange, 60×60 mm; Reduction ratio, 1:5
Right triangle frame CCM Automation technology Inc., China 290-300
Rotator Custom mechanical processing TT-R Acrylic
Servo motor Yifeng Inc., China 60ST-M01930 Flange, 60×60 mm; Torque, 1.91 N·m; for Y- and Z-rail
Servo motor Yifeng Inc., China 60ST-M01330 Flange, 60×60 mm; Torque, 1.27 N·m; for X-rail
Shaft Custom mechanical processing TT-S Acrylic
Stepping motor Taobao.com 86HBS120 Flange, 86×86 mm; Torque, 1.27 N·m; Driving turning table
Touch sensor Taobao.com CM-12X-5V
Tricolor LED Taobao.com CK017, RGB
T-shaped connecting board CCM Automation technology Inc., China 110-120

References

  1. Leone, F. T., Monaco, S., Henriques, D. Y., Toni, I., Medendorp, W. P. Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex. eNeuro. 2 (3), (2015).
  2. Caminiti, R., et al. Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex. European Journal of Neuroscience. 11 (9), 3339-3345 (1999).
  3. Georgopoulos, A. P., Schwartz, A. B., Kettner, R. E. Neuronal population coding of movement direction. Science. 233 (4771), 1416-1419 (1986).
  4. Fu, Q. G., Flament, D., Coltz, J. D., Ebner, T. J. Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. Journal of Neurophysiology. 73 (2), 836-854 (1995).
  5. Moran, D. W., Schwartz, A. B. Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology. 82 (5), 2676-2692 (1999).
  6. Carmena, J. M., et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology. 1 (2), E42 (2003).
  7. Li, H., et al. Prior Knowledge of Target Direction and Intended Movement Selection Improves Indirect Reaching Movement Decoding. Behavioral Neurology. , 2182843 (2017).
  8. Reina, G. A., Moran, D. W., Schwartz, A. B. On the relationship between joint angular velocity and motor cortical discharge during reaching. Journal of Neurophysiology. 85 (6), 2576-2589 (2001).
  9. Taylor, D. M., Tillery, S. I., Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science. 296 (5574), 1829-1832 (2002).
  10. Wang, W., Chan, S. S., Heldman, D. A., Moran, D. W. Motor cortical representation of hand translation and rotation during reaching. Journal of Neuroscience. 30 (3), 958-962 (2010).
  11. Murata, A., Gallese, V., Luppino, G., Kaseda, M., Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology. 83 (5), 2580-2601 (2000).
  12. Raos, V., Umiltá, M. A., Murata, A., Fogassi, L., Gallese, V. Functional Properties of Grasping-Related Neurons in the Ventral Premotor Area F5 of the Macaque Monkey. Journal of Neurophysiology. 95 (2), 709 (2006).
  13. Schaffelhofer, S., Scherberger, H. Object vision to hand action in macaque parietal, premotor, and motor cortices. eLife. 5, (2016).
  14. Baumann, M. A., Fluet, M. C., Scherberger, H. Context-specific grasp movement representation in the macaque anterior intraparietal area. Journal of Neuroscience. 29 (20), 6436-6448 (2009).
  15. Riehle, A., Wirtssohn, S., Grun, S., Brochier, T. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements. Frontiers in Neural Circuits. 7, 48 (2013).
  16. Michaels, J. A., Scherberger, H. Population coding of grasp and laterality-related information in the macaque fronto-parietal network. Scientific Reports. 8 (1), 1710 (2018).
  17. Fattori, P., et al. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. Journal of Neuroscience. 29 (6), 1928-1936 (2009).
  18. Asher, I., Stark, E., Abeles, M., Prut, Y. Comparison of direction and object selectivity of local field potentials and single units in macaque posterior parietal cortex during prehension. Journal of Neurophysiology. 97 (5), 3684-3695 (2007).
  19. Stark, E., Asher, I., Abeles, M. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site. Journal of Neurophysiology. 97 (5), 3351-3364 (2007).
  20. Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., Schwartz, A. B. Cortical control of a prosthetic arm for self-feeding. Nature. 453 (7198), 1098-1101 (2008).
  21. Vargas-Irwin, C. E., et al. Decoding complete reach and grasp actions from local primary motor cortex populations. Journal of Neuroscience. 30 (29), 9659-9669 (2010).
  22. Mollazadeh, M., et al. Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. Journal of Neuroscience. 31 (43), 15531-15543 (2011).
  23. Saleh, M., Takahashi, K., Hatsopoulos, N. G. Encoding of coordinated reach and grasp trajectories in primary motor cortex. Journal of Neuroscience. 32 (4), 1220-1232 (2012).
  24. Collinger, J. L., et al. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet. 381 (9866), 557-564 (2013).
  25. Lehmann, S. J., Scherberger, H. Reach and gaze representations in macaque parietal and premotor grasp areas. Journal of Neuroscience. 33 (16), 7038-7049 (2013).
  26. Rouse, A. G., Schieber, M. H. Spatiotemporal distribution of location and object effects in reach-to-grasp kinematics. Journal of Neuroscience. 114 (6), 3268-3282 (2015).
  27. Rouse, A. G., Schieber, M. H. Spatiotemporal Distribution of Location and Object effects in Primary Motor Cortex Neurons during Reach-to-Grasp. Journal of Neuroscience. 36 (41), 10640-10653 (2016).
  28. Hao, Y., et al. Neural synergies for controlling reach and grasp movement in macaques. 神经科学. 357, 372-383 (2017).
  29. Takahashi, K., et al. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices. Journal of Neuroscience. 37 (7), 1733-1746 (2017).
  30. Chen, J., et al. An automated behavioral apparatus to combine parameterized reaching and grasping movements in 3D space. Journal of Neuroscience Methods. 312, 139-147 (2019).
  31. Zhang, Q., et al. Development of an invasive brain-machine interface with a monkey model. Chinese Science Bulletin. 57 (16), 2036 (2012).
  32. Hao, Y., et al. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex. Journal of Neural Engineering. 11 (6), 066011 (2014).

Play Video

Cite This Article
Xu, K., Chen, J., Sun, G., Hao, Y., Zhang, S., Ran, X., Chen, W., Zheng, X. Design and Use of an Apparatus for Presenting Graspable Objects in 3D Workspace. J. Vis. Exp. (150), e59932, doi:10.3791/59932 (2019).

View Video