Summary

עיצוב ושימוש של מכשיר להצגת אובייקטים Graspable בסביבת עבודה תלת-ממדית

Published: August 08, 2019
doi:

Summary

המוצג כאן הוא פרוטוקול לבניית מכשיר אוטומטי המנחה קוף לבצע את המשימה הגמישה להגיע להישג. המנגנון משלב התקן טרנסלאסטד תלת-ממדי ומפנה טבלה כדי להציג אובייקטים מרובים במיקום שרירותי במרחב תלת-ממדי.

Abstract

ההגעה והאחיזה הן תנועות מאוד מצמידים, והדינמיקה העצבית הבסיסית שלהם נחקרו בעשור האחרון. כדי להבחין בין הגעה ואחיזה לקידודים, חיוני להציג זהויות אובייקטים שונות ללא תלות בעמדותיהם. המוצג כאן הוא העיצוב של מכשיר אוטומטי כי הוא התאספו עם שולחן המפנה ו תלת מימדי (3D) התקן הטרנסלtional כדי להשיג מטרה זו. טבלת המפנה מחליפה אובייקטים שונים המתאימים לסוגי אחיזה שונים, ואילו התקן התלת-ממד מעביר את טבלת המפנה במרחב תלת-ממדי. שניהם מונעים באופן עצמאי על-ידי מנועים, כך שמיקום היעד והאובייקט משולבים בצורה שרירותית. בינתיים, מסלול כף היד וסוגי אחיזה נרשמים דרך מערכת לכידת תנועה וחיישנים לגעת, בהתאמה. יתרה מכך, תוצאות הנציג הממחישים קוף מאומן בהצלחה באמצעות מערכת זו מתוארים. הוא צפוי כי מכשיר זה יהיה להקל על החוקרים ללמוד kinאמאם, עקרונות עצביים, ואת המוח ממשקי ממשקים הקשורים לתפקוד הגפיים העליונות.

Introduction

פותחו מכשירים שונים כדי ללמוד את עקרונות העצבים הבסיסיים המגיעים ואוחזים בתנועה בפרימטים שאינם אנושיים. בהגעה למשימות, מסך מגע1,2, סמן המסך נשלט על ידי ג’ויסטיק3,4,5,6,7, ו טכנולוגיה מציאות וירטואלית8 , מיכל בן 10 , 10 המועסקים כל להציג מטרות 2d ו-3d, בהתאמה. כדי להציג סוגי אחיזה שונים, אובייקטים בצורת שונה קבועים בתנוחה אחת או סיבוב סביב ציר היו בשימוש נרחב במשימות האוחז11,12,13. חלופה היא להשתמש ברמזים חזותיים כדי ליידע את הנושאים כדי לתפוס את אותו אובייקט עם סוגי אחיזה שונים14,15,16,17. לאחרונה, הגעה ואחיזה תנועות נחקרו יחד (כלומר, הנושאים להגיע מקומות מרובים ולתפוס עם סוגי אחיזה שונים במפגש ניסיוני)18,19,20, 21,22,23,24,25,26,27,28,29. ניסויים מוקדמים הציגו אובייקטים באופן ידני, אשר בהכרח מוביל לזמן נמוך ודיוק מרחבית20,21. כדי לשפר את הדיוק הנסיוני ולחסוך כוח אדם, נעשה שימוש נרחב בהתקני מצגת אוטומטיים הנשלטים על-ידי תוכניות. כדי לשנות את מיקום היעד ואת סוג האחיזה, הניסויים נחשפו אובייקטים מרובים בו, אבל הקרוב (או מוחלט) מיקום של יעדים וסוגי אחיזה מאוגדים יחד, מה שגורם דפוסי ירי נוקשה באמצעות אימון ארוך טווח22 ,27,28. אובייקטים מוצגים בדרך כלל במישור 2d, אשר מגביל את המגוון של תנועה להגיע פעילות עצבית19,25,26. לאחרונה, מציאות וירטואלית24 ורובוט זרוע23,29 הוצגו להציג אובייקטים בחלל 3d.

הציגו כאן פרוטוקולים מפורטים לבניית ושימוש במנגנון אוטומטי30 שיכול להשיג כל שילוב של עמדות יעד מרובים וסוגי אחיזה בחלל תלת-ממד. עיצבנו שולחן המפנה כדי להחליף אובייקטים והתקן טרנסלtional תלת-ממד כדי להעביר את הטבלה המפנה בחלל תלת-ממדי. הן שולחן המפנה והן מכשיר הטרנסלtional מונעים על ידי מנועים עצמאיים. בינתיים, המסלול התלת-ממדי של פרק כף היד והאותות העצביים נרשמים בו זמנית במהלך הניסוי. המנגנון מספק פלטפורמה רבת ערך לחקר תפקוד הגפיים העליון של הקוף רזוס.

Protocol

כל ההליכים התנהגותיים וכירורגיים תאמו את המדריך לטיפול ושימוש בחיות מעבדה (סין משרד הבריאות) ואושרו על ידי הוועדה לטיפול בבעלי חיים באוניברסיטת ג’ה-ג’יאנג, סין. 1. הרכבת התקן טרנסלאסטד תלת ממדי לבנות מסגרת של גודל 920 mm x 690 mm x 530 mm עם מסילות בנייה אלומיניום (חתך רוחב: 40 mm x 40 m…

Representative Results

גודל סביבת העבודה המלאה של המנגנון הוא 600 מ”מ, 300 מ”מ, ו 500 mm ב x-, y, ו-z צירים, בהתאמה. העומס המקסימלי של התקן טרנסלנציה תלת-ממד הוא 25 ק”ג, ואילו טבלת המפנה (כולל מנוע הקפיצה) משוקלל 15 ק ג וניתן להעבירו במהירות של עד 500 מ”מ/s. הדיוק הקימטי של המכשיר התלת-ממדי של 3D הוא פחות מ 0.1 מ”מ והרעש של המנגנון הוא פח?…

Discussion

המנגנון התנהגותי מתואר כאן מאפשר שילוב מבחינת הניסוי של תנועות שונות להגיע ואוחז (כלומר, הקוף יכול לתפוס אובייקטים בצורת שונה בכל מיקומים שרירותיים תלת-ממד בכל משפט). פעולה זו מושגת באמצעות שילוב של טבלת מפנה מותאמת אישית המחליפה אובייקטים שונים והתקן טרנסלאני ליניארי המעביר את טבלת המפנ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

אנו מודים למר Shijiang שן לעצתו על עיצוב מכשירים וגברת Guihua Wang לעזרתה בטיפול בבעלי חיים ובהכשרה. עבודה זו נתמכת על ידי תוכנית המחקר ופיתוח המפתח הלאומי של סין (2017yfc1308501), הקרן הלאומית למדע הטבע של סין (31627802), הפרויקטים הציבוריים של מחוז ג’ה-ג’יאנג (2016c33059), ואת קרנות המחקר הבסיסי עבור ה . אוניברסיטאות מרכזיות

Materials

Active X-rail CCM Automation technology Inc., China W50-25 Effective travel, 600 mm; Load, 25 kg
Active Y-rail CCM Automation technology Inc., China W60-35 Effective travel, 300 mm, Load 35 kg
Active Z-rail CCM Automation technology Inc., China W50-25 Effective travel, 500 mm; Load 25 kg
Bearing Taobao.com 6004-2RSH Acrylic
Case Custom mechanical processing TT-C Acrylic
Connecting ring CCM Automation technology Inc., China 57/60-W50
Connecting shaft CCM Automation technology Inc., China D12-700 Diam., 12 mm;Length, 700 mm
Diaphragm coupling CCM Automation technology Inc., China CCM 12-12 Inner diam., 12-12mm
Diaphragm coupling CCM Automation technology Inc., China CCM 12-14 Inner diam., 14-12mm
Electric slip ring Semring Inc., China SNH020a-12 Acrylic
Locating bar Custom mechanical processing TT-L Acrylic
Motion capture system Motion Analysis Corp. US Eagle-2.36
Neural signal acquisition system Blackrock Microsystems Corp. US Cerebus
NI DAQ device National Instruments, US USB-6341
Object Custom mechanical processing TT-O Acrylic
Passive Y-rail CCM Automation technology Inc., China W60-35 Effective travel, 300 mm; Load 35 kg
Passive Z-rail CCM Automation technology Inc., China W50-25 Effective travel, 500 mm; Load 25 kg
Pedestal CCM Automation technology Inc., China 80-W60
Peristaltic pump Longer Inc., China BT100-1L
Planetary gearhead CCM Automation technology Inc., China PLF60-5 Flange, 60×60 mm; Reduction ratio, 1:5
Right triangle frame CCM Automation technology Inc., China 290-300
Rotator Custom mechanical processing TT-R Acrylic
Servo motor Yifeng Inc., China 60ST-M01930 Flange, 60×60 mm; Torque, 1.91 N·m; for Y- and Z-rail
Servo motor Yifeng Inc., China 60ST-M01330 Flange, 60×60 mm; Torque, 1.27 N·m; for X-rail
Shaft Custom mechanical processing TT-S Acrylic
Stepping motor Taobao.com 86HBS120 Flange, 86×86 mm; Torque, 1.27 N·m; Driving turning table
Touch sensor Taobao.com CM-12X-5V
Tricolor LED Taobao.com CK017, RGB
T-shaped connecting board CCM Automation technology Inc., China 110-120

References

  1. Leone, F. T., Monaco, S., Henriques, D. Y., Toni, I., Medendorp, W. P. Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex. eNeuro. 2 (3), (2015).
  2. Caminiti, R., et al. Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex. European Journal of Neuroscience. 11 (9), 3339-3345 (1999).
  3. Georgopoulos, A. P., Schwartz, A. B., Kettner, R. E. Neuronal population coding of movement direction. Science. 233 (4771), 1416-1419 (1986).
  4. Fu, Q. G., Flament, D., Coltz, J. D., Ebner, T. J. Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. Journal of Neurophysiology. 73 (2), 836-854 (1995).
  5. Moran, D. W., Schwartz, A. B. Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology. 82 (5), 2676-2692 (1999).
  6. Carmena, J. M., et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology. 1 (2), E42 (2003).
  7. Li, H., et al. Prior Knowledge of Target Direction and Intended Movement Selection Improves Indirect Reaching Movement Decoding. Behavioral Neurology. , 2182843 (2017).
  8. Reina, G. A., Moran, D. W., Schwartz, A. B. On the relationship between joint angular velocity and motor cortical discharge during reaching. Journal of Neurophysiology. 85 (6), 2576-2589 (2001).
  9. Taylor, D. M., Tillery, S. I., Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science. 296 (5574), 1829-1832 (2002).
  10. Wang, W., Chan, S. S., Heldman, D. A., Moran, D. W. Motor cortical representation of hand translation and rotation during reaching. Journal of Neuroscience. 30 (3), 958-962 (2010).
  11. Murata, A., Gallese, V., Luppino, G., Kaseda, M., Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology. 83 (5), 2580-2601 (2000).
  12. Raos, V., Umiltá, M. A., Murata, A., Fogassi, L., Gallese, V. Functional Properties of Grasping-Related Neurons in the Ventral Premotor Area F5 of the Macaque Monkey. Journal of Neurophysiology. 95 (2), 709 (2006).
  13. Schaffelhofer, S., Scherberger, H. Object vision to hand action in macaque parietal, premotor, and motor cortices. eLife. 5, (2016).
  14. Baumann, M. A., Fluet, M. C., Scherberger, H. Context-specific grasp movement representation in the macaque anterior intraparietal area. Journal of Neuroscience. 29 (20), 6436-6448 (2009).
  15. Riehle, A., Wirtssohn, S., Grun, S., Brochier, T. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements. Frontiers in Neural Circuits. 7, 48 (2013).
  16. Michaels, J. A., Scherberger, H. Population coding of grasp and laterality-related information in the macaque fronto-parietal network. Scientific Reports. 8 (1), 1710 (2018).
  17. Fattori, P., et al. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. Journal of Neuroscience. 29 (6), 1928-1936 (2009).
  18. Asher, I., Stark, E., Abeles, M., Prut, Y. Comparison of direction and object selectivity of local field potentials and single units in macaque posterior parietal cortex during prehension. Journal of Neurophysiology. 97 (5), 3684-3695 (2007).
  19. Stark, E., Asher, I., Abeles, M. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site. Journal of Neurophysiology. 97 (5), 3351-3364 (2007).
  20. Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., Schwartz, A. B. Cortical control of a prosthetic arm for self-feeding. Nature. 453 (7198), 1098-1101 (2008).
  21. Vargas-Irwin, C. E., et al. Decoding complete reach and grasp actions from local primary motor cortex populations. Journal of Neuroscience. 30 (29), 9659-9669 (2010).
  22. Mollazadeh, M., et al. Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. Journal of Neuroscience. 31 (43), 15531-15543 (2011).
  23. Saleh, M., Takahashi, K., Hatsopoulos, N. G. Encoding of coordinated reach and grasp trajectories in primary motor cortex. Journal of Neuroscience. 32 (4), 1220-1232 (2012).
  24. Collinger, J. L., et al. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet. 381 (9866), 557-564 (2013).
  25. Lehmann, S. J., Scherberger, H. Reach and gaze representations in macaque parietal and premotor grasp areas. Journal of Neuroscience. 33 (16), 7038-7049 (2013).
  26. Rouse, A. G., Schieber, M. H. Spatiotemporal distribution of location and object effects in reach-to-grasp kinematics. Journal of Neuroscience. 114 (6), 3268-3282 (2015).
  27. Rouse, A. G., Schieber, M. H. Spatiotemporal Distribution of Location and Object effects in Primary Motor Cortex Neurons during Reach-to-Grasp. Journal of Neuroscience. 36 (41), 10640-10653 (2016).
  28. Hao, Y., et al. Neural synergies for controlling reach and grasp movement in macaques. 神经科学. 357, 372-383 (2017).
  29. Takahashi, K., et al. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices. Journal of Neuroscience. 37 (7), 1733-1746 (2017).
  30. Chen, J., et al. An automated behavioral apparatus to combine parameterized reaching and grasping movements in 3D space. Journal of Neuroscience Methods. 312, 139-147 (2019).
  31. Zhang, Q., et al. Development of an invasive brain-machine interface with a monkey model. Chinese Science Bulletin. 57 (16), 2036 (2012).
  32. Hao, Y., et al. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex. Journal of Neural Engineering. 11 (6), 066011 (2014).

Play Video

Cite This Article
Xu, K., Chen, J., Sun, G., Hao, Y., Zhang, S., Ran, X., Chen, W., Zheng, X. Design and Use of an Apparatus for Presenting Graspable Objects in 3D Workspace. J. Vis. Exp. (150), e59932, doi:10.3791/59932 (2019).

View Video