Describimos un método para visualizar los IEL con la etiqueta GFP utilizando imágenes intravitales del intestino delgado murina mediante microscopía confocal de disco giratorio invertido. Esta técnica permite el seguimiento de células vivas dentro de la mucosa hasta 4 h y se puede utilizar para investigar una variedad de interacciones inmunoepiteliales intestinales.
Los linfocitos intraepiteliales que expresan el receptor de células T (IEL) desempeñan un papel clave en la vigilancia inmune del epitelio intestinal. Debido en parte a la falta de un ligando definitivo para el receptor de células T, nuestra comprensión de la regulación de la activación de IEL y su función in vivo sigue siendo limitada. Esto requiere el desarrollo de estrategias alternativas para interrogar las vías de señalización implicadas en la regulación de la función IEL y la capacidad de respuesta de estas células al microambiente local. A pesar de que se entiende que los IEL limitan la translocación de patógenos, el uso de imágenes intravitales ha sido fundamental para comprender la dinámica espaciotemporal de las interacciones IEL/epiteliales en estado estacionario y en respuesta a patógenos invasivos. En este documento, presentamos un protocolo para visualizar el comportamiento migratorio de IEL en la pequeña mucosa intestinal de un ratón reportero de células T de GFP utilizando microscopía láser confocal de disco giratorio invertido. Aunque la profundidad máxima de imagen de este enfoque se limita en relación con el uso de microscopía de escaneo láser de dos fotones, la microscopía láser confocal de disco giratorio proporciona la ventaja de la adquisición de imágenes de alta velocidad con fotoblanqueo reducido y Fotodaño. Usando el software de análisis de imágenes 4D, el comportamiento de vigilancia de células T y sus interacciones con las células vecinas se pueden analizar después de la manipulación experimental para proporcionar información adicional sobre la activación y la función de IEL dentro de la mucosa intestinal.
Los linfocitos intraepiteliales (IEL) se encuentran dentro del epitelio intestinal, y se encuentran tanto a lo largo de la membrana del sótano como entre las células epiteliales adyacentes en el espacio intercelular lateral1. Hay aproximadamente un IEL por cada 5-10 células epiteliales; estos IEL sirven como centinelas para proporcionar vigilancia inmune de la granextensión de la barrera epitelial intestinal 2. Los IEL que expresan el receptor de células T (TCR) comprenden hasta el 60% de la población total de IEL en el intestino delgado murino. Los estudios realizados en ratones con deficiencia de células T demuestran un papel en gran medida protector de estas células en respuesta a lesiones intestinales, inflamación e infección3,4,5. A pesar de la generación del ratón noqueador Tcrd 6, nuestra comprensión de la biología de IEL sigue siendo limitada debido en parte al hecho de que los ligandos reconocidos por el TCR aún no se han identificado7. Como resultado, la falta de herramientas para estudiar esta población celular ha dificultado la investigación del papel de la activación y la función de la TCR en condiciones fisiológicas y patológicas. Para llenar este vacío, hemos desarrollado técnicas de imagen en vivo para visualizar el comportamiento migratorio de IEL y las interacciones con los enterocitos vecinos como un medio para proporcionar información adicional sobre la función y la capacidad de respuesta de IEL a los estímulos externos in vivo.
Durante la última década, la imagen intravital ha ampliado significativamente nuestra comprensión de los eventos moleculares involucrados en múltiples facetas de la biología intestinal, incluyendo el desprendimiento de células epiteliales8, la regulación de la función de barrera epitelial9 ,10, muestreo de células mieloides de contenidos luminales11,12, e interacciones host-microbio11,13,14,15,16 . En el contexto de la biología IEL, el uso de la microscopía intravital ha arrojado luz sobre la dinámica espaciotemporal de la motilidad IEL y los factores que median su comportamiento de vigilancia13,14,15, 16. El desarrollo de los ratones reportero tcrdH2BeGFP (TcrdEGFP), que etiqueta los IEL por la expresión17de la FPG nuclear, reveló que los IEL son altamente motiles dentro del epitelio y exhiben un comportamiento de vigilancia único que responde a los microbianos infección17,13,14. Recientemente, se desarrolló otro ratón de reportero de células T (Tcrd-GDL) que expresa GFP en el citoplasma para permitir la visualización de toda la celda18. Se ha utilizado una metodología similar para investigar el requisito de receptores específicos de quimiocina, como el receptor acoplado a proteínas G (GPCR)-18 y -55, sobre la dinámica de la motilidad IEL19,20. En ausencia de un reportero específico de la célula, se utilizaron anticuerpos fluorescentes conjugados contra CD8 para visualizar y rastrear la motilidad de IEL in vivo19,20. Aunque la microscopía de escaneo láser de dos fotones se utiliza comúnmente para imágenes intravitales, el uso de la microscopía láser confocal de disco giratorio proporciona ventajas únicas para capturar imágenes multicanal de alta velocidad y alta resolución con un mínimo ruido de fondo. Esta tecnología es ideal para dilucidar la dinámica espaciotemporal de las interacciones inmunes/epiteliales dentro del complejo microambiente de la mucosa intestinal. Además, mediante el uso de varios modelos de ratón transgénicos y/o knockout, estos estudios pueden proporcionar información sobre la regulación molecular de la función intestinal inmune y/o epitelial.
El desarrollo de técnicas de microscopía intravital ha proporcionado una oportunidad sin precedentes para observar la reorganización de las estructuras subcelulares8,9,22, interacciones célula-célula12, 25 y comportamiento migratorio celular13,14,15,<sup class="…
The authors have nothing to disclose.
Este trabajo cuenta con el apoyo de NIH R21 AI143892, New Jersey Health Foundation Grant, Busch Biomedical Grant (KLE). Agradecemos a Madeleine Hu por su ayuda en la edición del manuscrito y el suministro de los datos que se muestran en los resultados representativos.
35mm dish, No. 1.5 Coverslip | MatTek | P35G-1.5-14-C | |
Alexa Fluor 633 Hydrazide | Invitrogen | A30634 | |
BD PrecisionGlide Hypodermic needles – 27g | Thermo Fisher Scientific | 14-826-48 | |
BD Slip Tip Sterile Syringe – 1 ml | Thermo Fisher Scientific | 14-823-434 | |
BD Tuberculin Syringe | Thermo Fisher Scientific | 14-829-9 | |
Dissecting scissors | Thermo Fisher Scientific | 08-940 | |
Electrocautery | Thermo Fisher Scientific | 50822501 | |
Enclosed incubation chamber | OKOLAB | Microscope | |
Eye Needles, Size #3; 1/2 Circle, Taper Point, 12 mm Chord Length | Roboz | RS-7983-3 | |
Hank's Balanced Salt Solution | Sigma-Aldrich | 55037C | |
Hoechst 33342 | Invitrogen | H3570 | |
Imaris (v. 9.2.1) with Start, Track, XT modules | Bitplane | Software | |
Inverted DMi8 | Leica | Microscope | |
IQ3 (v. 3.6.3) | Andor | Software | |
Ketamine | Putney | Anesthesia | |
Kimwipes | VWR | 21905-026 | |
McPherson-Vannas scissors 3” (7.5 cm) Long 5X0.15mm Straight Sharp | Roboz | RS-5600 | |
Non-absorbable surgical suture, Silk Spool, Black Braided | Fisher Scientific | NC0798934 | |
Nugent Forceps 4.25” (11 cm) Long Angled Smooth 1.2mm Tip | Roboz | RS-5228 | |
Puralube Vet Ointment | Dechra | Lubricating Eye Ointment | |
Spinning disk Yokogawa CSU-W1 with a 63x 1.3 N.A. HC PLAN APO glycerol immersion objective, iXon Life 888 EMCCD camera, 405 nm diode laser, 488 nm DPSS laser, 640 nm diode laser | Andor | Confocal system | |
Xylazine | Akorn | Anesthesia |