Beschrieben hier ist eine einfache Methode zur Reinigung eines Genprodukts in Streptococcus mutans. Diese Technik kann bei der Reinigung von Proteinen, insbesondere Membranproteinen und Proteinen mit hoher Molekularmasse, von Vorteil sein und kann mit verschiedenen anderen Bakterienarten verwendet werden.
Die Aufklärung der Funktion eines Gens beinhaltet in der Regel den Vergleich von phänotypischen Merkmalen von Wildstämmen und Stämmen, bei denen das Gen von Interesse gestört wurde. Funktionsverlust nach Einer-Störung wird anschließend durch exogene Zugabe des Produkts des gestörten Gens wiederhergestellt. Dies hilft, die Funktion des Gens zu bestimmen. Eine zuvor beschriebene Methode beinhaltet die Erzeugung eines gtfC-Gen-gestörten Streptococcus-Mutans-Stamms. Hier wird eine anspruchslose Methode zur Reinigung des gtfC-Genprodukts aus dem neu erzeugten S. mutans Stamm nach der Genstörung beschrieben. Es beinhaltet die Zugabe einer Polyhistidin-kodierenden Sequenz am 3-Zoll-Ende des Gens von Interesse, die eine einfache Reinigung des Genprodukts mittels immobilisierter Metallaffinitätschromatographie ermöglicht. Für die genetische Veränderung dieser Methode sind keine anderen enzymatischen Reaktionen als PCR erforderlich. Die Wiederherstellung des Genprodukts durch exogene Addition nach Genstörungen ist eine effiziente Methode zur Bestimmung der Genfunktion, die auch an verschiedene Arten angepasst werden kann.
Die Analyse der Funktion eines Gens beinhaltet in der Regel den Vergleich von phänotypischen Merkmalen wildartigen Stämmen mit Stämmen, in denen das Gen von Interesse gestört wurde. Sobald der gengestörte Stamm produziert ist, ermöglicht die exogene Zugabe des Genprodukts eine funktionelle Wiederherstellung.
Die häufigste Methode zur Gewinnung gereinigter Genprodukte, die für nachfolgende Restaurationstests erforderlich sind, ist die Durchführung einer heterologen Expression bei Escherichia coli1. Allerdings ist die Expression von Membranproteinen oder proteinen mit hoher molekularer Masse mit diesem System oft schwierig1. In diesen Fällen wird das Zielprotein in der Regel aus den Zellen isoliert, die das Protein nativ durch eine komplexe Reihe von Schritten synthetisieren, was zum Verlust des Genprodukts führen kann. Um diese Probleme zu überwinden, wurde ein einfaches Verfahren für die Genproduktreinigung nach einer Genstörungsmethode2, PCR-basierte DNA-Spleißmethode3 (als zweistufige Fusion PCR bezeichnet) und Elektroporation für genetische Transformation in Streptococcus mutans. Die Zugabe eines Polyhistidin-Tags (His-tag) zum C-Terminus des Genprodukts erleichtert seine Reinigung durch immobilisierte Metallaffinitätschromatographie (IMAC).
Um den His-tag-exezierenden Stamm zu isolieren, wird die gesamte genomische DNA des Gens von Interesse (in diesem His-Tag-exezierenden Gen-disrupted Stamm) durch ein antibiotikaresistentes Markergen ersetzt. Das Verfahren zur Erzeugung des His-tag-exzierenden Stammes ist fast identisch mit dem Verfahren zur Erzeugung eines gengestörten Stammes, wie zuvorbeschrieben 4,5. Daher sollten die Methoden zur Genstörung und Genproduktisolation als serielle Experimente für die funktionelle Analyse durchgeführt werden.
In der vorliegenden Arbeit wird eine Polyhistidin-Kodierungssequenz am 3-Zoll-Ende des gtfC-Gens (GenBank locus tag SMU_1005) angebracht, die Glucosyltransferase-SI (GTF-SI) in S. mutans6kodiert. Dann wurden Expressionsstudien an einer Streptokokkenart durchgeführt. Die Erzielung einer heterologen gtfC-Expression durch E. coli ist schwierig, wahrscheinlich aufgrund der hohen molekularen Masse von GTF-SI. Diese Sorte heißt S. mutans His-gtfC. Eine schematische Abbildung, die die Organisation der gtfC- und Spectinomycin-Resistenz-Genkassette (spcr)7 loci in Wildtyp S. mutans (S. mutans WT) und deren Derivaten darstellt, ist in Abbildung 1. Der GTF-SI ist ein sekretores Protein, das zur Entwicklung des karogenen Dentalbiofilms6beiträgt. Unter der Anwesenheit von Saccharose wird ein anhaftender Biofilm auf einer glatten Glasoberfläche in WT S. Mutans Stamm, aber nicht in der S. mutans gtfC-disrupted Stamm (S. mutans ‘gtfC)2,5 . Die Biofilmbildung wird in S. mutans -gtfC nach exogener Zugabe des rekombinanten GTF-SI wiederhergestellt. Die Sorte, S. mutans His-gtfC, wird dann verwendet, um den rekombinanten GTF-SI zuproduzieren.
Das Design von Primern ist der kritischste Schritt im Protokoll. Die Sequenzen der gtfC-reverse und spcr-forward Primer wurden automatisch bestimmt, basierend auf den Sequenzen sowohl des 3-Zoll-Endbereichs von gtfC als auch des 5-Zoll-Endbereichs von spcr. Jeder Primer enthält 24 komplementäre Basen, die einen GS-Linker und eine His-Tag-Codierungssequenz in ihren 5′ Regionen kodieren. Eine Störung der nativen regulatorischen Sequenzen in den vorgelagerten Flan…
The authors have nothing to disclose.
Diese Arbeit wurde von der Japan Society for the Promotion of Science (JSPS) (Grant-Nummern 16K15860 und 19K10471 bis T. M., 17K12032 bis M. I., und 18K09926 an N. H.) und der SECOM Science and Technology Foundation (SECOM) (Grant-Nummer 2018.09.10 Nr. 1) unterstützt.
Agarose | Nippon Genetics | NE-AG02 | For agarose gel electrophoresis |
Anaeropack | Mitsubishi Gas Chemical | A-03 | Anaerobic culture system |
Anti-His-Tag monoclonal antibody | MBL | D291-7 | HRP-conjugated |
BCA protein assay kit | Thermo Fisher Scientific | 23227 | Measurement of protein concentration |
Brain heart infusion broth | Becton, Dickinson | 237500 | Bacterial culture medium |
CBB R-250 | Wako | 031-17922 | For biofilm staining |
Centrifugal ultrafiltration unit | Sartorius | VS2032 | Buffer replacement and protein concentration |
Centrifuge | Kubota | 7780II | |
Chromatographic column | Bio-Rad | 7321010 | For IMAC |
Dialysis membrane clamp | Fisher brand | 21-153-100 | |
Dialysis tubing | As One | 2-316-06 | |
DNA polymerase | Takara | R045A | High-fidelity DNA polymerase |
DNA sequencing | Eurofins Genomics | ||
ECL substrate | Bio-Rad | 170-5060 | For western blotting |
EDTA (0.5 M pH 8.0) | Wako | 311-90075 | Tris-EDTA buffer preparation |
Electroporation cuvette | Bio-Rad | 1652086 | 0.2 cm gap |
Electroporator | Bio-Rad | 1652100 | |
EtBr solution | Nippon Gene | 315-90051 | For agarose gel electrophoresis |
Gel band cutter | Nippon Genetics | FG-830 | |
Gel extraction kit | Nippon Genetics | FG-91202 | DNA extraction from agarose gel |
Imager | GE Healthcare | 29083461 | For SDS-PAGE and western blotting |
Imidazole | Wako | 095-00015 | Binding buffer and elution buffer preparation |
Incubator | Nippon Medical & Chemical Instruments | EZ-022 | Temperature setting: 4 °C |
Incubator | Nippon Medical & Chemical Instruments | LH-100-RDS | Temperature setting: 37 °C |
Membrane filter | Merck Millipore | JGWP04700 | 0.2 µm diameter |
Microcentrifuge | Kubota | 3740 | |
NaCl | Wako | 191-01665 | Preparation of binding buffer and elution buffer |
NaH2PO4·2H2O | Wako | 192-02815 | Preparation of binding buffer and elution buffer |
NaOH | Wako | 198-13765 | Preparation of binding buffer and elution buffer |
(NH4)2SO4 | Wako | 015-06737 | Ammonium sulfate precipitation |
Ni-charged resin | Bio-Rad | 1560133 | For IMAC |
PCR primers | Eurofins Genomics | Custom-ordered | |
Protein standard | Bio-Rad | 161-0381 | For SDS-PAGE and western blotting |
Solvent filtration apparatus | As One | FH-1G | |
Spectinomycin | Wako | 195-11531 | Antibiotics; use at 100 μg/mL |
Sterile syringe filter | Merckmillipore | SLGV004SL | 0.22 µm diameter |
Streptococus mutans ΔgtfC | Stock strain in the lab. | gtfC replaced with spcr | |
Streptococus mutans UA159 | Stock strain in the lab. | S. mutans ATCC 700610, Wild-type strain | |
Sucrose | Wako | 196-00015 | For biofilm development |
TAE (50 × ) | Nippon Gene | 313-90035 | For agarose gel electrophoresis |
Thermal cycler | Bio-Rad | PTC-200 | |
Tris-HCl (1 M, pH 8.0) | Wako | 314-90065 | Tris-EDTA buffer preparation |