Biogenese von spliceosomals snRNAs ist ein komplexer Prozess mit verschiedenen Zellkompartimenten. Hier haben wir Mikroinjektionen von fluoreszierend gekennzeichneten snRNAs eingesetzt, um deren Transport innerhalb der Zelle zu überwachen.
Die Biogenese von spliceosomalen snRNAs ist ein komplexer Prozess, der sowohl nukleare als auch zytoplasmatische Phasen einbezieht, und der letzte Schritt findet in einem nuklearen Kompartiment namens Cajal-Körper statt. Sequenzen, die eine direkte snRNA-Lokalisierung in diese subnukleare Struktur direkt machen, sind jedoch bis vor kurzem nicht bekannt. Um Sequenzen zu bestimmen, die für die Akkumulation von snRNAs in Cajal-Körpern wichtig sind, verwendeten wir mikroinjection von fluoreszierend markierten snRNAs, gefolgt von ihrer Lokalisierung in Zellen. Zuerst bereiteten wir snRNA-Deletionsmutanten, synthetisierte DNA-Vorlagen für die In-vitro-Transkription und transkribierte SnRNAs in Gegenwart von UTP in Verbindung mit Alexa488. Beschriftete snRNAs wurden mit 70 kDa-Dextran konjugiert mit TRITC gemischt und mikroinjiziert in den Kern oder das Zytoplasma menschlicher HeLa-Zellen. Die Zellen wurden für 1 h inkubiert und fixiert und das Cajal-Körpermarker-Spulen wurde durch indirekte Immunfluoreszenz visualisiert, während SnRNAs und Dextran, die als Marker der nuklearen oder zytoplasmatischen Injektion dienen, direkt mit einem Fluoreszenzmikroskop beobachtet wurden. Diese Methode ermöglicht effiziente und schnelle Tests, wie verschiedene Sequenzen die RNA-Lokalisierung in Zellen beeinflussen. Hier zeigen wir die Bedeutung der Sm-Bindungssequenz für die effiziente Lokalisierung von snRNAs in den Cajal-Körper.
DIE RNA-Spleißung ist einer der entscheidenden Schritte in der Genexpression, der durch einen großen Ribonukleoprotein-Komplex, das Spleceoom genannt wird, katalysiert wird. Insgesamt sind mehr als 150 Proteine und 5 kleine nukleare RNAs (snRNAs) in verschiedenen Stadien des Spleißwegs in das Spleißmittel integriert. U1, U2, U4, U5 und U6 snRNAs beteiligen sich an der Spleißung großer GU-AG-Introns. Diese snRNAs verbinden das Sifasam als vorgeformte kleine kernnukleare Ribonukleoproteinpartikel (snRNPs), die snRNA, sieben Sm-Proteine enthalten, die mit snRNA (oder Like-Sm-Proteinen, die mit der U6 snRNA assoziiert werden) und 1-12 Proteine, die für jeden snRNP spezifisch sind, assoziiert werden.
Die Montage von snRNPs umfasst zytoplasmatische und nukleare Stadien. Neu transkribierte snRNA wird in das Zytoplasma exportiert, wo sie einen Ring erhält, der aus sieben Sm-Proteinen zusammengesetzt ist. Der Sm-Ring dient anschließend als Signal für den snRNA-Re-Import zurück in den Kern. Defekte snRNAs, die sich nicht mit Sm-Proteinen verbinden, werden im Zytoplasma1beibehalten. Neu importierte snRNPs erscheinen zuerst im Cajal-Körper, wo sie auf snRNP-spezifische Proteine treffen und ihre Reifung beenden (in Referenz2,3). Wir haben vor kurzem gezeigt, dass die Hemmung der endgültigen Reifungsschritte zur Sequestrierung unreifer SnRNPs in Cajal-Körpern4,5führt. Wir haben ein Modell vorgeschlagen, bei dem die endgültige snRNP-Reifung unter Qualitätskontrolle steht, die die Zugabe von snRNP-spezifischen Proteinen und die Bildung aktiver snRNPs überwacht. Molekulare Details darüber, wie Zellen zwischen richtig zusammengesetzten reifen und aberranten unreifen Partikeln unterscheiden, bleiben jedoch schwer fassbar.
Um snRNA-Sequenzen zu bestimmen, die für die Ausrichtung und Akkumulation von snRNAs in nuklearen Cajal-Körpern unerlässlich sind, haben wir beschlossen, Mikroinjektionen von fluoreszierend markierten snRNAs einzusetzen. Microinjection war eine Methode der Wahl, weil: 1) es erfordert keine zusätzliche Sequenz-Tag, um synthetische snRNAs zu unterscheiden bilden ihre endogenen Gegenstücke, die besonders wichtig für kurze RNAs mit wenig Platz für das Einfügen von zusätzlichen Tag-Sequenz ist; 2) es ermöglicht die Analyse von Sequenzen, die für die Biogenese wichtig sind. Beispielsweise ist die Sm-Sequenz für die Sm-Ringmontage und den erneuten Import in den Kern6unerlässlich. Wenn snRNAs in der Zelle exprimiert werden, werden snRNAs, denen die Sm-Sequenz fehlt, im Zytoplasma abgebaut und erreichen nicht den Kern und die Cajal-Körper7. SnRNAs ohne die Sm-Sequenz können jedoch direkt in den Zellkern injiziert werden und somit eine mögliche Rolle der Sm-Sequenz in der Cajal-Körperlokalisierung sprossiert.
Hier beschreiben wir detailliert eine Mikroinjektionsmethode, die wir angewendet haben, um snRNA-Sequenzen zu bestimmen, die notwendig sind, um snRNAs in den Cajal-Körper5zu zielen. Wir haben gezeigt, dass Sm- und SMN-Bindungsstellen zusammen notwendig und ausreichend sind, um nicht nur snRNAs, sondern auch verschiedene kurze nicht-kodierende RNAs in den Cajal-Körper zu lokalisieren. Basierend auf Mikroinjektionen und anderen Beweisen schlugen wir vor, dass der auf der Sm-Bindungsstelle montierte Sm-Ring das Cajal-Körperlokalisierungssignal ist.
Wir verwendeten Mikroinjektionen von fluoreszierend markierten snRNAs, um Sequenzen zu bestimmen, die für die snRNA-Lokalisierung in nuklearen Cajal-Körpern wichtig sind. Durch die schnelle und recht einfache Vorbereitung von markierten RNAs (Vorbereitung der DNA-Vorlage durch PCR gefolgt von In-vitro-Transkription) bietet die Methode eine effektive Analyse, wie verschiedene Sequenzen zur RNA-Lokalisierung beitragen. In relativ kurzer Zeit konnten wir zehn verschiedene Deletionen oder Substitutionen der U2 snRNA analys…
The authors have nothing to disclose.
Diese Arbeit wurde von der Tschechischen Wissenschaftsstiftung (18-10035S), dem Nationalen Nachhaltigkeitsprogramm I (LO1419), der institutionellen Unterstützung (RVO68378050), dem Europäischen Fonds für regionale Entwicklung (CZ.02.1.01/0.0/0.0/16_013/0001775) und der Karlsuniversität (GAUK 134516). Wir würdigen ferner die Light Microscopy Core Facility, IMG CAS, Prag, Tschechische Republik (unterstützt durch Stipendien (Czech-Bioimaging – LM2015062).
ChromaTide Alexa fluor 488-5-UTP | ThermoFisher | C11403 | Stock concentration 1 mM |
Dulbecco's Modified Eagle Medium – high glucose | Sigma-Aldrich | D5796 | Containing 4.5 g⁄L D-glucose, Phenol red and antibiotics |
FemtoJet express Injector | Eppendorf | 5247000013 | |
Femtotips II | Eppendorf | 930000043 | Microinjection needle of 0.5 µm inner and 0.7 µm outer diameter |
Fluoromont G with DAPI | SouthernBiotech | 0100-20 | |
Glycogen | ThermoFisher | AM9510 | Stock concentration 5 mg/mL |
Gridded Glass Coverslips | Ibidi | 10817 | Coverslips with a grid, no direct experience with them |
InjectMan NI 2 Micromanipulator | Eppendorf | 5181000017 | |
m3-2,2,7G(5')ppp(5')G trimethyled cap analogue | Jena Bioscience | NU-853-1 | Stock concentration 40 mM |
MEGAshortscript T7 Transcription Kit | ThermoFisher | AM1354 | |
Microscope Cover Glasses 12 mm, No. 1 | Paul Marienfeld GmbH | 111520 | For routine work |
Microscope Cover Glasses 12 mm, No. 1.5 | Paul Marienfeld GmbH | 117520 | For high resolution images |
Microscope DeltaVision | GE Healthcare | For image acquisition | |
Microscope DMI6000 | Leica | For microinjection | |
Paraformaldehyde 32% solution EM grade | EMS | 15714 | Dissolved in PIPES to the final concentration 4% |
Phenol:Chloroform 5:1 | Sigma-Aldrich | P1944 | |
Primers for U2 amplification: Forward: 5’-TAATACGACTCACTATAGGGATCGCTTCTCGGCCTTTTGG, Reverse: 5´ TGGTGCACCGTTCCTGGAGGT |
Sigma-Aldrich | T7 rpromoter sequence in italics | |
Phusion High Fidelity DNA polymerase | BioLab | M0530L | |
RNasin Plus | Promega | N2615 | Stock concentration 40 mM |
Tetramethylrhodamine isothiocyanate Dextran 65-85 kDa | Sigma-Aldrich | T1162 | Dissolved in water, stock concentration 1 mg/mL |
Triton-X100 | Serva | 37240 | Dissolved in water, stock concentration 10% |