La biogenèse des snRNAr spliceosomal est un processus complexe impliquant divers compartiments cellulaires. Ici, nous avons utilisé la microinjection de snRNAs fluorescents afin de surveiller leur transport à l’intérieur de la cellule.
La biogenèse des snRNAr spliceosomal est un processus complexe impliquant des phases nucléaires et cytoplasmiques et la dernière étape se produit dans un compartiment nucléaire appelé le corps de Cajal. Cependant, les séquences qui dirigent la localisation de l’ARNs dans cette structure sous-nucléaire n’ont pas été connues jusqu’à récemment. Pour déterminer des séquences importantes pour l’accumulation des snRNAs dans les corps de Cajal, nous avons employé la microinjection des snRNAs fluorescents étiquetés suivis de leur localisation à l’intérieur des cellules. Tout d’abord, nous avons préparé des mutants de suppression de snRNA, synthétisé des modèles d’ADN pour la transcription in vitro et snRNAs transcrits en présence de l’UTP couplé avec Alexa488. Les snARN étiquetés ont été mélangés avec 70 kDa-Dextran conjugués avec TRITC, et microinjectés au noyau ou au cytoplasme des cellules humaines de HeLa. Les cellules ont été incubées pendant 1 h et fixes et la coiline de marqueur de corps de Cajal a été visualisée par immunofluorescence indirecte, alors que les snARN et le dextran, qui sert de marqueur de l’injection nucléaire ou cytoplasmique, ont été observés directement utilisant une microscope fluorescence. Cette méthode permet des tests efficaces et rapides de la façon dont diverses séquences influencent la localisation de l’ARN à l’intérieur des cellules. Ici, nous montrons l’importance de la séquence Sm-contraignante pour une localisation efficace des arnaques dans le corps cajal.
L’épissage de l’ARN est l’une des étapes cruciales dans l’expression des gènes, qui est catalysée par un grand complexe de ribonucléoprotéines appelé l’épiscédsome. Au total, plus de 150 protéines et 5 petits ARN nucléaires (ARNN) sont intégrés dans l’épisséoce à différents stades de la voie d’épissage. Les snRNAS U1, U2, U4, U5 et U6 participent à l’épissage des principaux introns GU-AG. Ces snRNAs se joignent à l’épiscédsome comme petites particules de ribonucléoprotéines nucléaires préformées (snRNPs) qui contiennent de l’ARNs, sept protéines Sm associées à l’ARSS (ou protéines Like-Sm, qui s’associent à l’ARNT U6) et 1-12 protéines spécifiques pour chaque snRNP.
L’assemblage des snRNPs implique des étapes cytoplasmiques et nucléaires. L’ARS nouvellement transcrit est exporté vers le cytoplasme où il acquiert un anneau assemblé à partir de sept protéines Sm. L’anneau Sm sert par la suite de signal pour la réimportation de l’ARNds vers le noyau. Les snARN défectueux qui ne s’associent pas aux protéines Sm sont conservés dans le cytoplasme1. Les snRNP nouvellement importés apparaissent pour la première fois dans le corps de Cajal où ils rencontrent des protéines spécifiques au snRNP et terminent leur maturation (revue en référence2,3). Nous avons récemment montré que l’inhibition des étapes finales de maturation entraîne la séquestration des snRNPs immatures dans les corps de Cajal4,5. Nous avons proposé un modèle où la maturation finale de snRNP est sous contrôle de qualité qui surveille l’addition des protéines snRNP-spécifiques et la formation des snRNPs actifs. Cependant, les détails moléculaires de la façon dont les cellules font la distinction entre les particules matures et immatures aberrantes correctement assemblées restent insaisissables.
Pour déterminer les séquences d’ARNs qui sont essentielles pour le ciblage et l’accumulation des ARNs dans les corps nucléaires de Cajal, nous avons décidé d’utiliser la microinjection de snRNAs fluorescents. La microinjection était une méthode de choix parce que : 1) il ne faut pas une étiquette de séquence supplémentaire pour distinguer les snRNAs synthétiques forment leurs homologues endogènes qui est particulièrement important pour les ARN courts avec peu d’espace pour l’insertion de séquence supplémentaire d’étiquette ; 2) il permet l’analyse des séquences qui sont importantes pour la biogenèse. Par exemple, la séquence Sm est essentielle pour l’assemblage de l’anneau Sm et la réimportation dans le noyau6. Lorsque les snRNAS sont exprimés dans la cellule, les snRNAs dépourvus de la séquence Sm sont dégradés dans le cytoplasme et n’atteignent pas le noyau et les corps cajal7. Cependant, les snRNAs sans la séquence Sm peuvent être directement microinjectés dans le noyau et donc un rôle potentiel de la séquence Sm dans la localisation du corps Cajal a été mis en compte.
Ici, nous décrivons en détail une méthode de microinjection que nous avons appliquée pour déterminer les séquences snRNA nécessaires pour cibler les ARNs dans le corps cajal5. Nous avons montré que les sites de liaison Sm et SMN sont ensemble nécessaires et suffisants pour localiser non seulement les ARN, mais aussi divers ARN courts non codants dans le corps de Cajal. Sur la base de la microinjection ainsi que d’autres preuves, nous avons proposé que l’anneau Sm assemblé sur le site de liaison Sm est le signal de localisation du corps Cajal.
Nous avons employé la microinjection des snRNAs fluorescents pour déterminer des séquences importantes pour la localisation de snRNA dans les corps nucléaires de Cajal. En raison de la préparation rapide et assez simple des ARN étiquetés (préparation du modèle d’ADN par PCR suivi de la transcription in vitro), la méthode offre une analyse efficace de la façon dont les différentes séquences contribuent à la localisation de l’ARN. En relativement peu de temps, nous avons pu analyser dix suppressions ou substi…
The authors have nothing to disclose.
Ce travail a été soutenu par la Fondation tchèque pour la science (18-10035S), le Programme national de développement durable I (LO1419), le soutien institutionnel (RVO68378050), le Fonds européen de développement régional (CZ.02.1.01/0.0/0.0/16-013/0001775) et l’Agence de subventions de Université Charles (GAUK 134516). Nous reconnaissons en outre le Centre de microscopie légère, IMG CAS, Prague, République tchèque (soutenu par des subventions (Czech-Bioimaging – LM2015062).
ChromaTide Alexa fluor 488-5-UTP | ThermoFisher | C11403 | Stock concentration 1 mM |
Dulbecco's Modified Eagle Medium – high glucose | Sigma-Aldrich | D5796 | Containing 4.5 g⁄L D-glucose, Phenol red and antibiotics |
FemtoJet express Injector | Eppendorf | 5247000013 | |
Femtotips II | Eppendorf | 930000043 | Microinjection needle of 0.5 µm inner and 0.7 µm outer diameter |
Fluoromont G with DAPI | SouthernBiotech | 0100-20 | |
Glycogen | ThermoFisher | AM9510 | Stock concentration 5 mg/mL |
Gridded Glass Coverslips | Ibidi | 10817 | Coverslips with a grid, no direct experience with them |
InjectMan NI 2 Micromanipulator | Eppendorf | 5181000017 | |
m3-2,2,7G(5')ppp(5')G trimethyled cap analogue | Jena Bioscience | NU-853-1 | Stock concentration 40 mM |
MEGAshortscript T7 Transcription Kit | ThermoFisher | AM1354 | |
Microscope Cover Glasses 12 mm, No. 1 | Paul Marienfeld GmbH | 111520 | For routine work |
Microscope Cover Glasses 12 mm, No. 1.5 | Paul Marienfeld GmbH | 117520 | For high resolution images |
Microscope DeltaVision | GE Healthcare | For image acquisition | |
Microscope DMI6000 | Leica | For microinjection | |
Paraformaldehyde 32% solution EM grade | EMS | 15714 | Dissolved in PIPES to the final concentration 4% |
Phenol:Chloroform 5:1 | Sigma-Aldrich | P1944 | |
Primers for U2 amplification: Forward: 5’-TAATACGACTCACTATAGGGATCGCTTCTCGGCCTTTTGG, Reverse: 5´ TGGTGCACCGTTCCTGGAGGT |
Sigma-Aldrich | T7 rpromoter sequence in italics | |
Phusion High Fidelity DNA polymerase | BioLab | M0530L | |
RNasin Plus | Promega | N2615 | Stock concentration 40 mM |
Tetramethylrhodamine isothiocyanate Dextran 65-85 kDa | Sigma-Aldrich | T1162 | Dissolved in water, stock concentration 1 mg/mL |
Triton-X100 | Serva | 37240 | Dissolved in water, stock concentration 10% |