Summary

Vibrio fischeri Izolatlar arasında rekabetçi etkileşimleri ölçmek için kokuluçak assay

Published: July 22, 2019
doi:

Summary

Bakteriler, interbakteriyel rekabetle uğraşmak için farklı mekanizmalar kodlayabilir. Burada, bakteriyel izolatlar ve karma bir nüfusun uzamsal yapısını nasıl etkilediğini arasında rekabetçi etkileşimleri karakterize etmek için kültür tabanlı bir protokol sunuyoruz.

Abstract

Bu yazıda iki bakteriyel nüfus arasındaki rekabet etkileşimlerini algılamak ve karakterize etmek için kültür tabanlı, kokuluçlama tahlili açıklanmaktadır. Bu yöntem, her nüfusun, sırasıyla her nüfusun seçim ve görsel ayrımcılığı için farklı antibiyotik direnci yetenekleri ve floresan proteinleri ile ayırt edilmesini sağlayan istikrarlı plazmids kullanır. Burada, rakip Vibrio fischeri suşları, floresans mikroskopisi görüntüleme ve nicel veri analizinin hazırlanması ve kokulerasyonu açıklanmaktadır. Bu yaklaşım basittir, hızlı sonuçlar verir ve bir nüfus öldürür veya başka bir nüfusun büyümesini inhibe olup olmadığını belirlemek için kullanılabilir, ve rekabet bir differe molekül yoluyla aracılık veya doğrudan hücre hücresi temas gerektirir. Her bakteriyel nüfus farklı bir floresan protein ifade ettiği için, tahlil karma bir koloni içinde rakip nüfusun uzamsal ayrımcılık izin verir. Açıklanan yöntemler bu tür için optimize koşulları kullanarak simbiyotik bakteri V. fischeri ile gerçekleştirilir rağmen, protokol en culturable bakteriyel izolatlar için adapte edilebilir.

Introduction

Bu yazıda iki bakteriyel yalıtın rekabetçi etkileşimlere sahip olup olmadığını belirlemek için kültür tabanlı bir yöntem özetlenmiştir. Karışık nüfus okurken, özellikle izolatlar doğrudan girişim mekanizmaları ile rekabet olup olmadığını, bakteriyel yalıtılmaların etkileşim ölçüde değerlendirmek önemlidir. Girişim Yarışması, bir nüfusun doğrudan büyüme inhibe veya bir rakip nüfus öldürür etkileşimleri anlamına gelir1. Bu etkileşimlerin bir mikrobiyal topluluğun yapısı ve işlevi2,3üzerinde derin etkileri olabilir çünkü tanımlamak için önemlidir.

Mikrobiyal yarışma mekanizmaları, hem konak bağlantılı hem de serbest yaşayan bakteri4,5,6,7dahil olmak üzere çeşitli ortamlarda bakterilerin genomlarını geniş ölçüde keşfedilmiştir. 8,9. Çeşitli rekabet stratejileri, bakterisidal kimyasallar1,12 ve salgılanan antimikrobiyal peptitler gibi difüzyon mekanizmaları da dahil olmak üzere10,11 olarak tanımlanmıştır.13 , bir inhibitör efektör hedef hücrelere aktarmak için hücre hücresi temas gerektiren temas bağımlı mekanizmalar yanı sıra9, 14,15,16,17 ,18.

Kültür tabanlı kokulinasyonlar yaygın Mikrobiyoloji5,8,19, bu makalede kullanılan rağmen nasıl test rekabet mekanizmasını karakterize etmek için, hem de uyarlama için öneriler özetlemek diğer bakteriyel türler ile kullanım için protokol. Ayrıca, bu yöntem, rekabetçi etkileşimlerin niteliği hakkında farklı sorulara yanıt vermek için verileri analiz etmek ve sunmak için birden çok yaklaşım açıklar. Burada açıklanan teknikler daha önce, koizole Vibrio fischeri bakterilerinin simbiyotik suşları arasında intraspecific rekabet altta yatan interbakteriyel öldürme mekanizması tanımlamak için kullanılmış olmasına rağmen19, onlar için uygundur çevresel izolatlar ve insan patojenleri de dahil olmak üzere birçok bakteriyel tür ve hem kontakt bağımlı hem de yayılabilen rekabetçi mekanizmaları değerlendirmek için kullanılabilir. Protokoldeki adımlar diğer bakteriyel türler için optimizasyon gerektirebilir. Daha fazla model sistemleri, farklı genotip10,16,20,21dahil etmek için izojenik organizmaların kullanımı ötesinde çalışmalarını genişletiyor göz önüne alındığında, bu yöntem değerli bir kaynak olacak nasıl rekabet etkileri Multi-strain veya çok türler sistemleri anlamak isteyen araştırmacılar için.

Protocol

1. Kokuleleme için suşları hazırlayın Kokuluzasyon tahlil sırasında bakteriyel rekabet için hedef olarak hizmet edecek uygun bir referans gerinim seçin. Başvuru gerinim seçerken en iyi uygulamalar için tartışma konusuna ve referans gerinimin sonuçları nasıl etkilediğini görün. Bu protokolde, V. fischeri strain ES114 referans gerinim olarak hizmet verecektir. Kokulinasyon içinde yalıtlar arasında ayrım yapmak için hangi seçim ve tarama yönte…

Representative Results

Bakteriyel nüfus arasında rekabetçi etkileşimleri değerlendirmek için, bir kokulerasyon tahlil Protokolü geliştirilmiştir ve V. fischeriiçin optimize edilmiştir. Bu yöntem, antibiyotik direnci genler ve floresan proteinleri kodlayan istikrarlı plazmids kullanır, diferansiyel seçimi ve her gerinin görsel ayrımcılık için izin. Coinkübasyon testinden toplanan verileri analiz ederek, bir etkileşimin rekabetçi sonucu ve etkileşimin mekanizması tespit edilebili…

Discussion

Yukarıda açıklanan kokuluzasyon tahlil interbakteriyel rekabet keşfetmek için güçlü bir yöntem sağlar. Bu yaklaşım, V. fischeri izolatlar ve rekabetçi mekanizma19karakterizasyonu arasında intraspecific rekabetin tanımlanması için izin. Tanımlanan yöntem Marine bakteri V. fischeriiçin optimize edilmiştir rağmen, kolayca klinik ve çevresel izolatlar dahil olmak üzere diğer bakteriyel türler yerleştirmek için değiştirilebilir. Rekabetçi mekanizmaların…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Biz onların yararlı geribildirim için yorumcular teşekkür etmek istiyorum. A.N.S., Gordon ve Betty Moore Vakfı tarafından Grant GBMF 255,03 aracılığıyla Yaşam Bilimleri Araştırma Vakfı ‘na destekleniyordu.

Materials

1.5 mL Microcentrifuge Tubes Fisher 05-408-129
10 μL multichannel pipette
100 μL multichannel pipette
300 μL multichannel pipette
10 μL single channel pipette
20 μL single channel pipette
200 μL single channel pipette
1000 μL single channel pipette
24-well plates Fisher 07-200-84 sterile with lid
96-well plates VWR 10062-900 sterile with lid
Calculator
Chloramphenicol Sigma C0378 stock (20 mg/mL in Ethanol); final concentration in media (2 μg /mL LBS)
Fluorescence dissecting microscope with camera and imaging software
forceps Fisher 08-880
Kanamycin Sulfate Fisher BP906-5 stock (100 mg/mL in water, filter sterilize); final concentration in media (1 μg/mL LBS)
Nitrocellulose membrane (FS MCE, 25MM, NS) Fisher SA1J788H5 0.22 μm nitrocellulose membrane (pk of 100)
petri plates Fisher FB0875713 sterile with lid
Spectrophotometer
Semi-micro cuvettes VWR 97000-586
TipOne 0.1-10 μL starter system USA Scientific 1111-3500 10 racks
TipOne 200 μL starter system USA Scientific 1111-500 10 racks
TipOne 1000 μL starter system USA Scientific 1111-2520 10 racks
Vortex
Name Company Catalog Number Comments
LBS media
1M Tris Buffer (pH ~7.5) 50 mL 1 M stock buffer (62 mL HCl, 938 mL DI water, 121 g Trizma Base)
Agar Technical Fisher DF0812-17-9 15 g (Add only for plates)
DI water 950 mL
Sodium Chloride Fisher S640-3 20 g
Tryptone Fisher BP97265 10 g
Yeast Extract Fisher BP9727-2 5 g

References

  1. Hibbing, M. E., Fuqua, C., Parsek, M. R., Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology. 8 (1), 15-25 (2010).
  2. Nyholm, S. V., McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nature Reviews Microbiology. 2 (8), 632-642 (2004).
  3. Dörr, N. C. D., Blockesh, M. Bacterial type VI secretion system facilitates niche domination. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), 8855-8857 (2018).
  4. Maclntyre, D. L., Miyata, S. T., Kitaoka, M., Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proceedings of the National Academy of Sciences of the United States of America. 107 (45), 19520-19524 (2010).
  5. Salomon, D., Gonzalez, H., Updegraff, B. L., Orth, K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PloS One. 8 (4), e61086 (2013).
  6. Sana, T. G., et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proceedings of the National Academy of Sciences of the United States of America. 113 (34), E5044-E5051 (2016).
  7. Schwarz, S., et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathogens. 6 (8), e1001068 (2010).
  8. Wenren, L. M., Sullivan, N. L., Cardarelli, L., Septer, A. N., Gibbs, K. A. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. MBio. 4 (4), (2013).
  9. García-Bayona, L., Guo, M. S., Laub, M. T. J. E. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. Elife. 6, 24869 (2017).
  10. Stubbendieck, R. M., Straight, P. D. Multifaceted interfaces of bacterial competition. Journal of bacteriology. 198 (16), 2145-2155 (2016).
  11. Cornforth, D. M., Foster, K. R. Antibiotics and the art of bacterial war. Proceedings of the National Academy of Sciences of the United States of America. 112 (35), 10827-10828 (2015).
  12. Shank, E. A., Kolter, R. New developments in microbial interspecies signaling. Current Opinion in Microbiology. 12 (2), 205-214 (2009).
  13. Roelofs, K. G., Coyne, M. J., Gentyala, R. R., Chatzidaki-Livanis, M., Comstock, L. E. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. MBio. 7 (4), e01055-e01016 (2016).
  14. Dey, A., Vassallo, C. N., Conklin, A. C., Pathak, D. T., Troselj, V., Wall, D. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. Journal of bacteriology. 198 (6), (2016).
  15. Danka, E. S., Garcia, E. C., Cotter, P. A. Are CDI systems multicolored, facultative, helping greenbeards?. Trends in Microbiology. 25 (5), 391-401 (2017).
  16. Willett, J. L., Ruhe, Z. C., Coulding, C. W., Low, D. A., Hayes, C. S. Contact-dependent growth inhibition (CDI) and CdiB/CdiA two-partner secretion proteins. Journal of molecular biology. 427 (23), 3754-3765 (2015).
  17. Cianfanelli, F. R., Monlezun, L., Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends in Microbiology. 24 (1), 51-62 (2016).
  18. Joshi, A., Kostiuk, B., Rogers, A., Teschler, J., Pukatzki, S., Yildiz, F. H. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends in microbiology. 25 (4), 267-279 (2017).
  19. Speare, L., et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proceedings of the National Academy of Sciences of the United States of America. 115 (36), E8528-E8537 (2018).
  20. Shank, E. A. Using coculture to detect chemically mediated interspecies interactions. Journal of Visualized Experiments. (80), (2013).
  21. Long, R. A., Rowley, D. C., Zamora, E., Liu, J., Bartlett, D. H., Azam, F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Applied and Environmental Microbiology. 71 (12), 8531-8536 (2005).
  22. Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L., Stabb, E. V. New rfp-and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Applied and Environmental Microbiology. 72 (1), 802-810 (2006).
  23. Sana, T. G., et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. Journal of Biological Chemistry. 287 (32), 27095-27105 (2012).
  24. Bachmann, V., Kostiuk, B., Unterweger, D., Diaz-Satizabal, L., Ogg, S., Pukatzki, S. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS. 9 (8), e0004031 (2015).
  25. Ishikawa, T., Rompikuntal, P. K., Lindmark, B., Milton, D. L., Wai, S. N. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PloS One. 4 (8), e6734 (2009).
  26. Ishikawa, T., et al. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infection and immunity. 80 (2), 575-584 (2012).
  27. Pollack-Berti, A., Wollenberg, M. S., Ruby, E. G. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environmental Microbiology. 12 (8), 2302-2311 (2010).
  28. Meibom, K. L., Blockesh, M., Dolganov, N. A., Wu, C. Y., Schoolnik, G. K. Chitin induces natural competence in Vibrio cholerae. Science. 310 (5755), 1824-1827 (2005).
  29. Borgeaud, S., Metzger, L. C., Scrignari, T., Blockesh, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347 (6217), 63-67 (2015).
  30. Townsley, L., Mangus, M. P. S., Mehic, S., Yildiz, F. H. Response of Vibrio cholerae to low-temperature shift: CpsV regulates type VI secretion, biofilm formation, and association with zooplankton. Applied and Environmental Microbiology. 82 (14), 00807-00816 (2016).
  31. Huang, Y., et al. Functional characterization and conditional regulation of the type VI secretion system in Vibrio fluvialis. Frontiers in microbiology. 8, 528 (2017).

Play Video

Cite This Article
Speare, L., Septer, A. N. Coincubation Assay for Quantifying Competitive Interactions between Vibrio fischeri Isolates. J. Vis. Exp. (149), e59759, doi:10.3791/59759 (2019).

View Video