L’obiettivo del presente protocollo è di etichettare, arricchire e identificare i substrati della chinasi di proteina CK2 da un campione biologico complesso come un lysate delle cellule o del tessuto omogeneizzato. Questo metodo sfrutta gli aspetti unici di CK2 biologia per questo scopo.
Lo studio delle relazioni di chinasi-substrato è essenziale per ottenere una comprensione completa delle funzioni di questi enzimi e ai loro obiettivi a valle negli Stati sia fisiologici che patologici. CK2 è un’evolutivamente conservati serina/treonina chinasi con un crescente elenco di centinaia di substrati coinvolti in molteplici processi cellulari. Grazie alle sue proprietà pleiotropici, identificare e caratterizzare una serie completa di CK2 substrati è stato particolarmente impegnativo e rimane un ostacolo nello studio di questo importante enzima. Per affrontare questa sfida, abbiamo messo a punto una strategia sperimentale versatile che consente l’arricchimento mirato e l’identificazione di presunti CK2 substrati. Questo protocollo si avvale della specificità unica dual co-substrato di CK2 permettendo per specifici thiophosphorylation dei suoi substrati in una cellula o tessuto lisato. Queste proteine del substrato sono successivamente alchilati, immunoprecipitated e identificati mediante spettrometria di massa tandem/cromatografia liquida (LC-MS/MS). In precedenza abbiamo utilizzato questo approccio per identificare con successo CK2 substrati dalle ovaie di Drosophila e qui abbiamo estendere l’applicazione del presente protocollo alle cellule di glioblastoma umano, illustrando l’adattabilità di questo metodo per indagare il ruoli biologici di questa chinasi in vari organismi modello e sistemi sperimentali.
Chinasi di proteina sono componenti chiave delle cascate di trasduzione del segnale. La fosforilazione delle proteine substrato da questi enzimi suscita risposte biologiche che regolano gli eventi critici, controllo della divisione cellulare, il metabolismo e differenziazione, tra gli altri. CK2 è un’espressa ubiquitariamente, acidofilico serina/treonina chinasi che è conservata dal lievito all’uomo e che svolge i ruoli importanti in molti processi cellulari che vanno dalla regolazione trascrizionale di progressione del ciclo cellulare per apoptosi1 ,2,3. L’enzima è un heterotetramer composto da due α catalitico (o α’) subunità e due di subunità β regolamentazione4. Oltre ad essere altamente pleiotropico, CK2 esibisce due altre caratteristiche insolite che complicano la sua analisi, vale a dire attività costitutiva5 e dual co-substrato specificità6. Quest’ultima proprietà dota CK2 con la possibilità di utilizzare GTP nonché ATP per fosforilazione delle proteine substrato.
Delezione genica delle subunità catalitica o regolamentazione di CK2 in topi provoca mortalità embrionale che indica che esso gioca un ruolo cruciale durante lo sviluppo e l’organogenesi7,8. CK2 anche overexpressed in diversi tipi di cancro e quindi rappresenta un promettente bersaglio terapeutico9,10,11. Infatti, inibitori specifici che attività di chinasi CK2 destinazione sono attualmente sotto inchiesta per questo scopo12,13,14. Mentre l’inibizione di CK2 è una valida opzione, data la sua natura pleiotropica, un’alternativa e forse più razionale approccio sarebbe target critici substrati CK2 che sottendono la progressione di alcuni tumori. Pertanto, la completa identificazione e caratterizzazione di proteine substrato CK2 sarebbe di beneficio significativo per delucidare le funzioni specifiche di questa chinasi all’interno di un particolare tipo di tessuto o del tumore.
Qui, descriviamo un metodo versatile biochimico per l’identificazione dei substrati di CK2 da un campione biologico complesso come una cellula o tessuto lisato. Questo protocollo sfrutta la specificità di co-substrato dual di CK2 dall’uso dell’analogo GTP GTPγS (guanosina 5′-[γ-thio]triphosphate) che non è possibile utilizzare altre chinasi endogene. Questo permette efficacemente la chinasi ad “etichettare” suoi substrati all’interno di questo campione per identificazione e isolamento successivo.
Qui, descriviamo un metodo relativamente semplice biochimico per l’identificazione dei substrati della chinasi di proteina CK2 da un campione biologico complesso. I passaggi critici del presente protocollo si basano sull’insolita proprietà enzimatiche di CK2 e includono CK2-dipendente thiophosphorylation delle proteine substrato specifico utilizzando GTPγS e loro successiva immunoprecipitazione e identificazione. Con questi risultati, abbiamo dimostrato l’utilità e la versatilità di questo approccio come ora…
The authors have nothing to disclose.
Questo lavoro è stato sostenuto in parte da una sovvenzione del Commonwealth universale ricerca Enhancement Pennsylvania dipartimento della sanità di t.i.s.
12 mg/mL PNBM | Abcam | ab138910 | 40.5 µL |
2.5 mM GTPγS | Sigma-Aldrich | G8634-1MG | 5.4 µL |
Anti-CK2α (E-7) mouse monoclonal antibody | Santa Cruz Biotechnology | sc-373894 | 1:1000 for Western blotting |
Anti-GAPDH (6C5) mouse monoclonal antibody | Santa Cruz Biotechnology | sc-32233 | 1:1000 for Western blotting |
Anti-nucleolin rabbit polyclonal antibody | Abcam | ab22758 | 1:1000 for Western blotting |
Anti-thiophosphate ester [51-8] rabbit monoclonal antibody | Abcam | ab92570 | Varies (final concentration 2.8 µg for each sample) |
Centrifuge pre-set to 4ºC | ThermoScientific | Sorvall Legend Micro 21R Cat# 75-772-436 | |
cOmplete Mini EDTA-Free Protease Inhibitor | Roche | 11836170001 | |
Lysis Buffer | See recipe below | See recipe below | 30 mL |
Normal rabbit IgG antibody (isotype control) | Cell Signaling Technology | 2729S | Varies (final concentration 2.8 µg for each sample) |
PD MiniTrap Column | GE Healthcare | 28-9180-10 | 3 columns |
Protein A/G Plus Agarose Beads | Santa Cruz Biotechnology | sc-2003 | 600 µL |
Recombinant human CK2 holoenzyme | New England Biolabs | P6010S | 2.7 µL |
Rotator | Labnet: Mini Labroller | Mini Labroller SKU# H5500 | |
T98G human glioblastoma cells | ATCC | CRL-1690 | |
Water bath pre-set to 30ºC | Shel Lab | H20 Bath Series Model# SWB15 |