Summary

利用体外和细胞内形状研究小分子诱导的预 mrna 结构变化

Published: January 30, 2019
doi:

Summary

通过引物扩展 (shape) 实验分析的体外和细胞内选择性 2 ‘-羟基酰化的详细方案, 以确定在存在 rna 靶向小分子的情况下, mrna 前序列的二级结构。本文中介绍。

Abstract

在针对小分子的药物开发过程中, 需要阐明它们与目标 rna 序列相互作用的结构变化。本文提供了一个详细的体外和细胞内选择性 2 ‘-羟基酰化分析引物延伸 (shape) 协议, 以研究 rna 结构的变化, 在存在的实验药物存在的脊髓肌肉萎缩 (sma), 生存运动神经元 (smn)-c2, 以及 smn2 基因的前 mrna 的外显子7。在体外形态中, 含有 smn2 外显子7的140个核苷酸的 rna 序列通过 t7 rna 聚合酶转录, 在 smn-c2 存在下折叠, 然后用温和的 2 ‘-oh 酰化试剂 2-甲基咪唑 (nai) 进行改性。这种 2 ‘-oh-nai 加合物通过32p 标记引物延伸进一步探测, 并通过聚丙烯酰胺凝胶电泳 (page) 进行求解。相反, 2 ‘-oh 酰化在细胞内的形状发生在原位与 smn-c2 结合细胞 rna 在活细胞。然后, pcr 扩增了 smn2 基因中外显子7的 mrna 前序列, 以及 shape 诱导的引物延伸突变, 并进行了下一代测序。通过对这两种方法的比较, 体外 shape 是一种更具成本效益的方法, 不需要计算能力来可视化结果。然而, 体外 shape 衍生 rna 模型有时会偏离细胞环境中的二级结构, 这可能是由于与 rna 结合蛋白的所有相互作用的丧失。细胞内形状不需要放射性物质工作场所, 并在细胞环境中产生更准确的 rna 二级结构。此外, 细胞内 shape 通常适用于更大范围的 rna 序列 (~ 1, 000个核苷酸), 利用下一代测序, 而体外 shape (~ 200 核苷酸) 通常依赖于 page 分析。在 smn2 前 mrna 中的外显子7的情况下, 体外和细胞内形状 rna 模型是相似的。

Introduction

选择性 2 ‘-羟基酰化分析引物延伸 (shape) 是一种测量每个核苷酸在感兴趣的 rna 序列中的动力学的方法, 并阐明单核苷酸分辨率 1下的二级结构。在体外条件 2,3,4 (纯化 rna 在一个定义的缓冲系统) 和在活哺乳动物细胞5, 6,已经开发了 shape 方法来研究继发中长 rna 序列的结构 (通常和 lt;1,000 核苷酸用于细胞内形状和 lt;200 核苷酸体外形状)。它是特别有用的评估的结构变化后, 结合 rna 相互作用的小分子代谢物2,4,7,8 和研究机械作用在药物开发过程中的 rna 靶向分子 9,10

rna 靶向药物发现最近通过不同的方法和策略引起了学术实验室和制药业的关注 11 12,分别为 131415 ,16。最近针对临床使用的小分子的例子包括两种结构不同的实验药物, lmi-070 17 和 rg-7916 18,19, 用于脊髓肌肉萎缩 (sma), 这表明很有希望在第二阶段临床试验20。这两种分子都被证明是针对运动神经元 (smn) 2 的存活, 并调节 smn2 基因 61721 的剪接过程.我们之前展示了体外和细胞内形状在检测目标 rna 结构变化的应用, 在存在的类似的 rg-7916 被称为 smn-c26.

原则上, shape 以无偏见的方式测量 rna 序列的每个核苷酸在存在过量的自淬火酰化试剂的情况下的 2 ‘-oh 酰化速率。酰化试剂在水中不稳定, 对 1-甲基-7-亚硝基二酸酐的半衰期较短 (例如, 1 -甲基-7-亚硝基二氢化物的半衰期为 17; 1 m7, 2-甲基烟酸咪唑 (nai) 22 的半衰期较短,对其同一性不敏感, 对其同一性不敏感。基地23。这将导致更有利的酰化 2 ‘-oh 组的柔性碱基, 这可以转化为一个准确的评估动态的每个核苷酸。具体而言, 基对中的核苷酸通常比未配对的核苷酸对 2 ‘-oh 改性试剂 (如 nai 和 1m7) 的反应性较低。

查看 rna 模板的来源和 2 ‘-oh 酰化发生的位置, shape 通常可分为体外和细胞内形状。体外 shape 使用纯化的 t7 转录 rna, 在实验设计中缺乏细胞环境。在细胞内形态中, rna 模板转录和 2 ‘-oh 酰化都发生在活细胞内;因此, 研究结果可以在细胞环境中重述 rna 结构模型。在文献24中, 细胞内形状被称为活体形状, 用于活细胞中携带的形状。由于这个实验不是在动物身上进行的, 我们把这个实验称为细胞内形状的准确性。

体外引物延伸期和细胞内形状的策略也不同。在体外形态中, 逆转录酶在 mg2+存在的情况下停止在 2 ‘-oh 酰化位置。因此, 在聚丙烯酰胺凝胶电泳 (page) 中, 一个32p-ld 引物延伸率显示为一个带, 该带的强度与酰化速率1成正比。在细胞内形态中, 逆转录酶在 mn2 +存在的情况下, 在 2 ‘-oh 加合物位置产生随机突变。通过深度下一次测序可以捕获每个核苷酸的突变速率, 然后可以计算单核苷酸分辨率下的 shape 反应性。

细胞内 shape 的一个潜在问题是低信噪比 (即, 大多数 2 ‘-oh 组未被修改, 而未修改的序列占据了下一代测序中的大部分读数)。最近, 由 chang 实验室25开发了一种浓缩2-oh 改性 rna 的方法, 该方法被称为体内点击 shape (icshape)。这种浓缩方法可能有利于研究弱小分子, 如 rna 相互作用, 特别是在转录全范围的审讯中。

Protocol

1. 体外形状 请注意:从已发布的协议1修改协议. 准备 rna 模板请注意:t7 转录模板被排序为合成双链 dna (dsdna), 并通过插入大肠杆菌载体进行扩增 , 该载体携带独特的一对 ecrori/bamhi 限制性内切酶位点, 如 pet28a, 或通过 pcr 进行扩增。pcr 扩增协议如下图所示。 混合以下材料: 50μl pcr 主混合物 (见?…

Representative Results

我们之前证明, rna 拼接调节剂 smn-c2 与 smn2 基因前 mrna 的外显子7上的 aggaag 母题相互作用, 并使用 shape 评估 smn-c26 存在时的 rna 结构变化。smn-c2 的结合位点不同于 fda 批准的 sma、nusinersen 反义寡核苷酸 (aso), 它在内含子 7、28 (图 1 a) 上结合和阻断了内含子上的内含子拼接消声器 (iss)。大多?…

Discussion

在体外形状中, 使用高质量的均质 rna 模板至关重要。然而, t7 转录通常会产生异质序列36。特别是在 3 ‘-末端有±1核苷酸的序列, 产量不可忽略36 , 通常很难通过聚丙烯酰胺凝胶纯化去除。异构 rna 模板可以在引物延伸产物的测序凝胶分析中产生多组信号, 这有时会使其难以解释结果。rna 模板表达盒的 5 ‘-和 3 ‘ 端的核酶将使两端同质化。

无论…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由国家卫生研究院 r01 赠款 (ns094721, k. a. j.) 促成的。

Materials

DNA oligonucleotide IDT gBlock for > 200 bp DNA synthesis
Phusion Green Hot Start II High-Fidelity PCR Master Mix Thermo Fisher F566S
NucleoSpin gel and PCR clean-up kit Takara 740609.50
MegaScript T7 transcription kit Thermo Fisher AM1333 Contains 10X reaction buffer, T7 enzyme, NTP and Turbo DNase
DEPC-treated water Thermo Fisher 750023
2X TBE-urea sample buffer Thermo Fisher LC6876
40% acrylamide/ bisacrylamide solution (29:1) Bio-Rad 1610146
10X TBE buffer Thermo Fisher 15581044
Nalgene Rapid-Flow™ Filter Unit Thermo Fisher 166-0045
Kimwipe Kimberly-Clark 34133
TEMED Thermo Fisher 17919
SYBR-Safe dye Thermo Fisher S33102
6 % TBE-urea mini-gel Thermo Fisher EC6865BOX
ChemiDoc Bio-Rad
T4 PNK NEB M0201S
γ-32P-ATP Perkin Elmer NEG035C005MC
Hyperscreen™ Intensifying Screen GE Healthcare RPN1669 calcium tungstate phosphor screen
phosphor storage screen Molecular Dynamics BAS-IP MS 3543 E
Amersham Typhoon GE Healthcare
NAI (2M) EMD Millipore 03-310
GlycoBlue Thermo Fisher AM9515
SuperScript IV Reverse Transcriptase Thermo Fisher 18090010 Contains 5X RT buffer, SuperScript IV
dNTP mix (10 mM) Thermo Fisher R0192
ddNTP set (5mM) Sigma GE27-2045-01
large filter paper Whatman 1001-917
Gel dryer Hoefer GD 2000
QIAamp DNA Blood Mini Kit Qiagen 51104 Also contains RNase A and protease K
SMN2 minigene34 Addgene 72287
Heat inactivated FBS Thermo Fisher 10438026
Pen-Strep Thermo Fisher 15140122
Opti-MEM I Thermo Fisher 31985062
FuGene HD Promega E2311
TrpLE Thermo Fisher 12605010
DPBS without Ca/ Mg Thermo Fisher 14190250
TRIzol Thermo Fisher 15596018
RNeasy mini column Qiagen 74104 Also contains RW1, RPE buffer
RNase-Free DNase Set Qiagen 79254 Contains DNase I and RDD buffer
Deionized formamide Thermo Fisher AM9342
MnCl2•4H2O Sigma-Aldrich M3634
random nonamer Sigma-Aldrich R7647
SuperScript First-Strand Synthesis System Thermo Fisher 11904-018 Contains 10X RT buffer, SuperScript II reverse transcriptase
AccuPrime pfx DNA polymerse Thermo Fisher 12344024
NextSeq500 Illumina
NucAway column Thermo Fisher AM10070 for desalting purpose

References

  1. Wilkinson, K. A., Merino, E. J., Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): Quantitative RNA structure analysis at single nucleotide resolution. Nature Protocols. 1, 1610-1616 (2006).
  2. Trausch, J. J., et al. Structural basis for diversity in the SAM clan of riboswitches. Proceedings of the National Academy of Sciences. 111, 6624-6629 (2014).
  3. Souliere, M. F., et al. Tuning a riboswitch response through structural extension of a pseudoknot. Proceedings of the National Academy of Sciences. 110, E3256-E3264. , E3256-E3264 (2013).
  4. Rice, G. M., Busan, S., Karabiber, F., Favorov, O. V., Weeks, K. M. SHAPE Analysis of Small RNAs and Riboswitches. Methods in Enzymology. , 165-187 (2014).
  5. Spitale, R. C., et al. RNA SHAPE analysis in living cells. Nature Chemical Biology. 9, 18-20 (2013).
  6. Wang, J., Schultz, P. G., Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proceedings of the National Academy of Sciences. 115, E4604-E4612 (2018).
  7. Price, I. R., Gaballa, A., Ding, F., Helmann, J. D., Ke, A. Mn 2+ -Sensing Mechanisms of yybP-ykoY Orphan Riboswitches. Molecular Cell. 57, 1110-1123 (2015).
  8. Hennelly, S. P., Sanbonmatsu, K. Y. Tertiary contacts control switching of the SAM-I riboswitch. Nucleic Acids Research. 39, 2416-2431 (2011).
  9. Abulwerdi, F. A., et al. Development of Small Molecules with a Noncanonical Binding Mode to HIV-1 Trans Activation Response (TAR) RNA. Journal of Medicinal Chemistry. 59, 11148-11160 (2016).
  10. Shortridge, M. D., et al. A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing. ACS Chemical Biology. 12, 1611-1620 (2017).
  11. Warner, K. D., Hajdin, C. E., Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nature Reviews Drug Discovery. 17, 547-558 (2018).
  12. Mullard, A. Small molecules against RNA targets attract big backers. Nature Reviews Drug Discovery. 16, 813-815 (2017).
  13. Shortridge, M. D., Varani, G. Structure based approaches for targeting non-coding RNAs with small molecules. Current Opinion in Structural Biology. 30, 79-88 (2015).
  14. Gallego, J., Varani, G. Targeting RNA with Small-Molecule Drugs: Therapeutic Promise and Chemical Challenges. Accounts of Chemical Research. 34, 836-843 (2001).
  15. Rizvi, N. F., Smith, G. F. RNA as a small molecule druggable target. Bioorganic & Medicinal Chemistry Letters. 27, 5083-5088 (2017).
  16. Connelly, C. M., Moon, M. H., Schneekloth, J. S. The Emerging Role of RNA as a Therapeutic Target for Small Molecules. Cell Chemical Biology. 23, 1077-1090 (2016).
  17. Palacino, J., et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nature Chemical Biology. 11, 511-517 (2015).
  18. Ratni, H., et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2 ) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). Journal of Medicinal Chemistry. 61, 6501-6517 (2018).
  19. Naryshkin, N., et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 345, (2014).
  20. Chiriboga, C., et al. Preliminary Evidence for Pharmacodynamics Effects of RG7916 in JEWELFISH, a Study in Patients with Spinal Muscular Atrophy who Previously Participated in a Study with Another SMN2-Splicing Targeting Therapy (S46.003). Neurology. 90, (2018).
  21. Sivaramakrishnan, M., et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nature Communications. 8, (2017).
  22. Lee, B., et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA. 23, 169-174 (2017).
  23. Weeks, K. M., Mauger, D. M. Exploring RNA Structural Codes with SHAPE Chemistry. Accounts of Chemical Research. 44, 1280-1291 (2011).
  24. Smola, M. J., et al. SHAPE reveals transcript-wide interactions , complex structural domains , and protein interactions across the Xist lncRNA in living cells. Proceedings of the National Academy of Sciences. 113, 10322-10327 (2016).
  25. Flynn, R. A., et al. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nature Protocols. 11, 273-290 (2016).
  26. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A., Weeks, K. M. Selective 2 ′ -hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct , versatile and accurate RNA structure analysis. Nature Protocols. 10, 1643-1669 (2015).
  27. Hua, Y., et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes & Development. 24, 1634-1644 (2010).
  28. Hua, Y., et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 478, 123-126 (2011).
  29. Wee, C. D., Havens, M. A., Jodelka, F. M., Hastings, M. L. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells. PloS One. 9, e115205 (2014).
  30. Hammond, J. A., Rambo, R. P., Filbin, M. E., Kieft, J. S. Comparison and functional implications of the 3D architectures of viral tRNA-like structures. RNA. 15, 294-307 (2009).
  31. Singh, N. N., Singh, R. N., Androphy, E. J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Research. 35, 371-389 (2007).
  32. Deigan, K. E., Li, T. W., Mathews, D. H., Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proceedings of the National Academy of Sciences. 106, 97-102 (2009).
  33. Qi, H., et al. . Preparation of pyridopyrimidine derivatives and related compounds for treating spinal muscular atrophy. , (2013).
  34. Lorson, C. L., Hahnen, E., Androphy, E. J., Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America. 96, 6307-6311 (1999).
  35. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E., Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nature Methods. 11, 959 (2014).
  36. Milligan, J. F., Groebe, D. R., Witherell, G. W., Uhlenbeck, O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Research. 15, 8783-8798 (1987).
  37. Nilsen, T. W. RNase Footprinting to Map Sites of RNA-Protein Interactions. Cold Spring Harbor Protocols. , (2014).
  38. Velagapudi, S. P., et al. Design of a small molecule against an oncogenic noncoding RNA. Proceedings of the National Academy of Sciences. , 5898-5903 (2016).
  39. Barnwal, R. P., Yang, F., Varani, G. Applications of NMR to structure determination of RNAs large and small. Archives of Biochemistry and Biophysics. 628, 42-56 (2017).
  40. Scott, L. G., Hennig, M. RNA structure determination by NMR. Methods in Molecular Biology. 452, 29-61 (2008).

Play Video

Cite This Article
Wang, J., Hammond, J., Johnson, K. A. Using In Vitro and In-cell SHAPE to Investigate Small Molecule Induced Pre-mRNA Structural Changes. J. Vis. Exp. (143), e59021, doi:10.3791/59021 (2019).

View Video