Here, we describe a method for purifying histidine-tagged pyrophosphokinase enzymes and utilizing thin layer chromatography of radiolabelled substrates and products to assay for the enzymatic activity in vitro. The enzyme activity assay is broadly applicable to any kinase, nucleotide cyclase, or phosphor-transfer reaction whose mechanism includes nucleotide triphosphate hydrolysis.
Kinase and pyrophosphokinase enzymes transfer the gamma phosphate or the beta-gamma pyrophosphate moiety from nucleotide triphosphate precursors to substrates to create phosphorylated products. The use of γ-32-P labeled NTP precursors allows simultaneous monitoring of substrate utilization and product formation by radiography. Thin layer chromatography (TLC) on cellulose plates allows rapid separation and sensitive quantification of substrate and product. We present a method for utilizing the thin-layer chromatography to assay the pyrophosphokinase activity of a purified (p)ppGpp synthetase. This method has previously been used to characterize the activity of cyclic nucleotide and dinucleotide synthetases and is broadly suitable for characterizing the activity of any enzyme that hydrolyzes a nucleotide triphosphate bond or transfers a terminal phosphate from a phosphate donor to another molecule.
Kinase and pyrophosphokinase (or diphospho-kinase) enzymes transfer phosphates from nucleotide triphosphate (NTP) precursors to substrate molecules. The substrates can include other nucleotides, amino acids or proteins, carbohydrates, and lipids1. Bioinformatic analyses can sometimes predict an enzyme's cognate substrate or substrates based on the similarity to characterized enzymes, but experimental validation is still necessary. Similarly, the affinity of an enzyme for its substrate(s) and the rate at which it catalyzes the phosphor-transfer reaction, and the effects of co-factors, inhibitors, or other enzyme effectors must be determined experimentally. To avoid depletion of the ATP precursor by other ATP-consuming enzymes present in bacterial cytoplasm, quantitative activity assays require purified protein.
Protein purification by metal affinity chromatography has been covered thoroughly in the literature2,3. Histidine tags consisting of six consecutive histidine residues appended to the N- or C-terminus of a recombinant protein allow rapid purification by metal affinity chromatography4,5,6. These sequences are small compared to the proteins they modify and typically have a minimal effect on protein function, although they can sometimes alter protein stability and/or enzyme kinetics7,8. Histidine tags at the N- and C-termini of the same protein can have different effects, which are difficult to predict without knowing the structure of the protein in question. Histidine tags are typically incorporated during the cloning of a recombinant protein by designing primers that encode six histidine residues, either immediately 3' to the ATG start codon or immediately 5' to the stop codon of the open reading frame. After amplification, the hexahistidine-containing gene is ligated into a vector under the control of an inducible promoter and expressed, typically in a laboratory strain of E. coli. The recombination protein can then be isolated on an affinity resin containing immobilized divalent cations (typically nickel or cobalt)9. Contaminating native metal-binding proteins can be removed by titration with imidazole, which competitively displaces bound protein2. Finally, the target protein is eluted from the column with higher concentrations of imidazole. There are several commercial sources for immobilized metal cation resins, and the manufacturers provide recommendations for the buffer conditions and imidazole concentrations. After elution, protein may be analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), dialyzed, or used immediately in functional assays.
There are several methods to indirectly monitor kinase activity by coupling ATP phosphate bond hydrolysis to a second reaction that releases or excites a fluorophore or generates chemiluminescence, but these reactions have multiple moving parts and can be logistically challenging10. The most straightforward way to specifically measure phosphor-transfer activity is to directly monitor the transfer of a radiolabeled phosphate group from a commercially available γ-32-P NTP precursor to a non-radiolabeled substrate11,12,13. Mixtures of radiolabeled substrates and products can be separated and quantified by thin layer chromatography (TLC). TLC utilizes the differential mobility of solutes in a given solvent by allowing the solvent (liquid phase) to migrate by capillary action across a surface (solid phase) upon which a mixture of solutes has been adsorbed14. Solutes that are small and/or lack favorable interactions with the solid phase will migrate longer distances from their initial location than solutes with higher molecular weights or great affinities for the solid. For examination of phosphor-transfer, phosphate moieties increase the molecular weight of molecules they are added to, and add negative ionic charge at neutral or acidic pH11,12,14. This decreases their mobility on a basic surface such as PEI-cellulose. When developed in acidic potassium phosphate buffer, mixtures of mono-, di-, tri-, tetra-, and pentaphosphate species can be readily separated on PEI-cellulose, allowing quantification of each species (Figure 2, Figure 3). Such assays can be performed using cell lysates containing the enzyme of interest, but this includes the potential for the activity of other kinases, phosphatases, and general ATPases to deplete the substrate and/or product. For a quantitative in vitro assessment of enzyme activity, it is necessary to purify the enzyme of interest.
Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) are ribonucleotide signaling molecules formed by the transfer of a pyrophosphate group from an adenosine triphosphate (ATP) precursor to, respectively, a guanosine diphosphate (GDP) or guanosine tetraphosphate (GTP) substrate15. These single ribonucleotide signals, collectively known as (p)ppGpp, mediate a cell-wide response to environmental stress known as the stringent response in diverse bacterial species15,16. Two conserved classes of enzymes catalyze the formation of (p)ppGpp15,17 Rel/Spo homolog (RSH) enzymes are 'long' bifunctional (p)ppGpp synthetase/hydrolases named for their similarity to the RelA and SpoT (p)ppGpp metabolic enzymes from Escherichia coli which contain synthetase, hydrolase, and regulatory domains, while small alarmone synthetase (SAS) enzymes are short monofunctional synthetases found exclusively in Gram positive bacteria15,17,18. The spore-forming Gram-positive bacterium Clostridium difficile encodes putative RSH and SAS genes19. Here, we present initial activity assays that confirm that the C. difficile RSH enzyme is a catalytically active (p)ppGpp synthetase.
1. Inducible Overexpression of a Histidine-tagged Protein
2. Protein Purification by Nickel Affinity Chromatography
NOTE: Continue directly with protein purification steps provided below after clarifying the cell lysate. Storing clarified lysate at 4 °C overnight for subsequent protein purification reduces the protein yield.
3. Protein Activity Assay by Thin Layer Chromatography
We present a method for the affinity purification of a (p)ppGpp synthetase from Clostridium difficile and the assessment of its enzymatic activity. Figure 1 demonstrates the protein purification achieved by metal affinity chromatography. The second elution (E2) fraction from this purification was dialyzed and used for the enzymatic activity assay. Figure 2 details the necessary steps to prepare for and carry out pyrophosphotransferase assays by thin layer chromatography. Figure 3 illustrates how data from these experiments is quantitated with an emphasis on appropriate blanking and conversion of signal intensity to percentages. In Figure 4A, we present a representative TLC autoradiograph of a (p)ppGpp synthetase assay using purified RSH, a C. difficile (p)ppGpp synthetase. The initial spot location, ppGpp, and ATP spots are clearly visible on the autoradiograph, as is the solvent front that is visible because it contains trace amounts of radiolabeled inorganic phosphate. Molecules with more phosphoric acid moieties exhibit less mobility from the initial spot location, as they have greater molecular weights and more negative ionic charge; this impedes their mobility on the basic PEI-cellulose. Over the course of 120 min at 37 °C, ppGpp accumulation and ATP depletion are negligible in reactions lacking the synthetase enzyme, while both ATP depletion and ppGpp accumulation are readily apparent in the presence of RSH Figure 4A). Figure 4B shows the absolute ATP and ppGpp signals from four experiments. Figure 4C shows the same data as Figure 4B with the absolute signals converted to percentages of the total radioactive signal. This minimizes inaccuracies due to pipetting error and/or radioactive decay and allows data from experiments performed on different days to be pooled without introducing uncertainty to the data.
Figure 1: Nickel affinity purification of RSH. A Coomassie-stained SDS-PAGE gel showing lysate (L) and centrifuged lysate (CL) of induced BL21 pMMB::rsh-his6 as well as the flow-through (FT), wash 1 (W1), wash 2, and elution (E1 and E2) fractions after nickel affinity purification. The E2 fraction was dialyzed and used for subsequent enzymatic assays. Molecular weights of protein size standards are shown on the right. Please click here to view a larger version of this figure.
Figure 2: Preparation of TLC plates. (A) Plates are washed in one dimension by placing the bottom edge in water (blue). Contaminants (yellow) migrate to the top of the plate with the solvent. (B) After a plate is dried completely, it is washed in a second dimension by rotating it 90° relative to the first wash and again allowing water to migrate to the top of the plate. (C) After washing, any contaminants are isolated in one corner of the plate. The resin of a washed TLC plate may be marked gently with a soft pencil to indicate where samples should be spotted. For 2 μL samples, a minimum of 1 cm between spots will ensure adequate sample separation. Samples are spotted 2 cm from the 'bottom' of the plate. After sample application, solvent is allowed to run to the 'top,' where any contaminants will have been isolated by the water washes. Please click here to view a larger version of this figure.
Figure 3: Signal quantification. Regions of interest (ROIs) defining the total, ATP, and ppGpp signal are shown for a blank lane and an experimental lane. Signal intensity within each blank ROI is subtracted from the experimental value, and the ATP and ppGpp signals are normalized to the total signal using the equations shown to present the percentage of the total radioactive signal attributable to ATP and ppGpp. Please click here to view a larger version of this figure.
Figure 4. Autoradiograph of a representative TLC plate: (A) This image shows the solvent front, ATP, ppGpp, and initial spot locations of a reaction carried out using purified C. difficile RSH. A control reaction containing no protein (n.p.) allows quantification of uncatalyzed ATP hydrolysis while a blank lane allows accurate signal quantification. (B) Absolute signal intensities of ATP and ppGpp during 120 minutes of incubation with C. difficile RSH. Shown are the means and standard deviations of four independent experiments. (C) The same data from (B) with the ppGpp signal presented as a percentage of the total radioactive signal. ppGpp accumulation in the no protein (n.p.) control reaction is shown in black. Shown are the means and standard deviations of two independent experiments with two technical replicates each. Please click here to view a larger version of this figure.
Here we report the purification of His-tagged RSH from C. difficile and present a method for activity quantification using radiolabeled thin layer chromatography. This method has previously been used to assess the activity of diguanylate cyclase enzymes from C. difficile, as well as (p)ppGpp synthetase, nucleotide cyclase, kinase and phosphodiesterase enzymes from other organisms11,12,13,21. While the method is not novel, it is broadly applicable to many types of assay, and we hope researchers will find its presentation in video format helpful.
The most critical steps within the protocol are the protein purification (steps 2.1.3–2.1.10), reaction preparation for thin layer chromatography (step 2.2–2.3), and data analysis (step 3.4). We have found the following modifications to be especially helpful: the addition of MgCl2 to the buffers used for nickel column purification (steps 2.1.3–2.1.10) is crucial for the enzymatic activity of the purified protein, and the presentation of the enzyme activity data as % ppGpp produced rather than absolute ppGpp produced ensures that data collected on different days, with different of γ-32P-ATP are consistent. This method is accessible to any research group with access to a phosphorimager, and the data analysis is straightforward. By quantitating phosphotransfer activity as a percentage of 32P converted to ppGpp, we ensure data reproducibility. Because very small reaction volumes are spotted onto the PEI-cellulose plates, there is significant potential for slight pipetting inaccuracies to introduce significant error in the absolute quantity of γ-32P-ATP or 32P-ppGpp in a given lane on the TLC plate, but the distribution of the radioactive signal between the possible forms is independent of the total signal present. In addition, the total radioactive signal in a given lane can depend on the age of the γ-32P-ATP used in the experiment. 32P has a half-life of 14.3 days, so independent assays performed several days apart can show substantial differences in the total radioactive signal detected but the relative amounts of radiolabeled ATP and ppGpp depend only on enzyme activity. Presenting the data as 'percent ppGpp' rather than absolute ppGpp signal prevents the introduction of random noise from pipetting error or radioactive decay. This is illustrated by the differences between Figure 4B and 4C. Both display the means and standard deviations of the data from the same four experiments, but the data in Figure 4C has been normalized to the total radioactive signal.
We have determined that the C. difficile RSH enzyme is a functional ppGpp synthetase in vitro, capable of rapid pyrophosphotransfer from an ATP phosphodonor and a GDP acceptor. This reaction is dependent on magnesium, which coordinates ATP and guanosine binding by RSH family enzymes22. We have modified the manufacturer protocols for nickel affinity chromatography to include 5 mM MgCl2 in the lysis and wash buffers as well as the elution buffer because we have found that purification in the absence of magnesium is detrimental to the enzymatic activity of the purified protein. This suggests that magnesium ions may play a non-catalytic role in stabilizing protein structure in the absence of nucleotide binding, but further structural characterization will be necessary to confirm this.
To our knowledge, this work is the first published report of ppGpp synthesis in C. difficile and indicates that this organism is likely to utilize a (p)ppGpp-mediated stringent response to survive extracellular stress. (p)ppGpp metabolism has never before been reported in this important human pathogen. Given that the stringent response is implicated in persistence in many other pathogens, it is likely that (p)ppGpp-mediated signaling may play a role in the high stress tolerance of C. difficile cells and the high recurrence rate of C. difficile infection23,24,25.
The authors have nothing to disclose.
This work was funded by NIAID 1K22AI118929-01. EBP was supported by a Summer Research Fellowship Program Grant from the Office of Research at Old Dominion University, Norfolk, Virginia, USA.
Inducible overexpression of a histidine-tagged protein | |||
Phusion polymerase | New England Biolabs (NEB) | M0530L | |
QIAEX II DNA Gel Extraction Kit | Qiagen | 20021 | |
KpnI restriction enzyme | NEB | R0142S | |
PstI restriction enzyme | NEB | R0140S | |
T4 DNA ligase | NEB | M0202 | |
NEB® 5-alpha Competent E. coli (High Efficiency) | NEB | C2987I | |
BL21 (DE3) Competent E. coli | NEB | C2527I | |
IPTG | Sigma-Aldrich | 10724815001 | |
JXN-26 centrifuge with JLA 10.500 rotor | Beckman Coulter Avanti | – | |
Microcentrifuge with D3024/D3024R rotor | Scilogex | – | |
MaxQ SHKE6000 Incubator | Thermo Scientific | – | |
Ultrasonic processor | Sonics | VC-750 | |
Protein purification by nickel affinity chromatography | |||
Ni-NTA resin | G Biosciences | 786-940/941 | |
Pierce Disposable Gravity columns, 10 mL | Thermo Scientific | 29924 | |
1 mL Spectra/ Por float-A-lyzer G2 dialysis device (MWCO: 20-kD) | Spectrum | G235033 | |
Mini-Protean Electrophoresis Cell | BioRad | 1658004 | |
Protein activity assay by thin layer chromatography | |||
Thin layer chromatograph (TLC) development tank | General Glass Blowing Company | 80-3 | |
Polyethylenimine (PEI)-cellulose plates (20 cm x 20 cm, 100 um thickness) with polyester support | Sigma-Aldrich | Z122882-25EA | |
ATP, [γ-32P]- 3000 Ci/mmol 10mCi/ml lead, 100 μCi | Perkin Elmer | NEG002A | |
Adenosine 5’-triphosphate (ATP) 100 mM | Bio Basic Canada | AB0311 | |
Guanosine-5’-diphosphate disodium salt (GDP) | Alfa Aesar | AAJ61646MC/E | |
Storage phosphor screen | GE Healthcare Life Sciences | BAS-IP TR 2040 E Tritium Screen | |
Storm 860 phosphorimager | GE Healthcare Life Sciences | – |