Die kombinierte Verwendung von transkranielle Gleichstrom Stimulation und Roboter-Therapie als ein Add-on für konventionelle Rehabilitationstherapie kann bessere therapeutische Ergebnisse durch Modulation der Plastizität des Gehirns führen. In diesem Artikel beschreiben wir die kombinierten Methoden, die in unserem Institut zur Verbesserung der motorischen Leistung nach einem Schlaganfall.
Neurologische Erkrankungen wie Schlaganfall und zerebrale Lähmung sind die führenden Ursachen für Erwerbsunfähigkeit und können zu schweren Arbeitsunfähigkeit und Einschränkung der täglichen Aktivitäten durch untere und obere Extremität Beeinträchtigungen führen. Intensive Physio- und Ergotherapie gelten nach wie vor wichtigsten Behandlungen, aber neue außerordentliche Therapien standard Rehabilitation, die funktionellen Ergebnisse optimieren kann werden untersucht.
Transkranielle Gleichstrom Stimulation (tDCS) ist eine nicht-invasive Gehirn Stimulationstechnik, die zugrunde liegenden Hirnregionen durch die Anwendung der schwachen Gleichströme durch die Elektroden auf der Kopfhaut, modulierende kortikale Erregbarkeit polarisiert. Steigendes Interesse an dieser Technik ist auf seine niedrigen Kosten, einfache Handhabung und Auswirkungen auf die menschliche neuronale Plastizität zurückzuführen. Neuere Forschungen wurde durchgeführt, um festzustellen, das klinische Potenzial der tDCS in unterschiedlichen Erkrankungen wie Depressionen, Parkinson und motorische Rehabilitation nach Schlaganfall. tDCS hilft Plastizität des Gehirns zu verbessern und eine vielversprechende Technik in Rehabilitationsprogramme zu sein scheint.
Eine Reihe von Roboter-Geräte wurden entwickelt zur Unterstützung bei der Rehabilitation der oberen Extremität Funktion nach einem Schlaganfall. Die Sanierung der motorischen Defizite ist oft ein langwieriger Prozess erfordert multidisziplinäre Ansätze für einen Patienten größtmögliche Unabhängigkeit zu erreichen. Diese Geräte nicht die Absicht, manuelle Rehabilitationstherapie ersetzen; Stattdessen wurden sie als zusätzliches Instrument zur Rehabilitationsprogramme, so dass unmittelbare Wahrnehmung der Ergebnisse und Verfolgung von Verbesserungen, damit Patienten, motiviert zu bleiben.
TDSC und Roboter-assistierte Therapie vielversprechend Add-ons für Schlaganfallrehabilitation und gezielt die Modulation der Plastizität des Gehirns, mehrere Berichte beschreiben, deren Einsatz zur konventionellen Therapie und die Verbesserung der therapeutischen Ergebnisse zugeordnet werden. Allerdings wurden in jüngerer Zeit, einige kleine klinischen Studien entwickelt, die damit verbundenen Einsatz von tDCS und Roboter-assistierte Therapie in der Schlaganfallrehabilitation zu beschreiben. In diesem Artikel beschreiben wir die kombinierten Methoden, die in unserem Institut zur Verbesserung der motorischen Leistung nach einem Schlaganfall.
Neurologische Erkrankungen wie Schlaganfall, zerebrale Lähmung und Schädel-Hirn-Verletzungen sind führende Ursachen der Erwerbsunfähigkeit aufgrund von Läsionen und anschließende neurologische Symptome, die zu schweren Arbeitsunfähigkeit und Einschränkung der täglichen Aktivitäten1führen können. Bewegungsstörungen reduzieren erheblich die Lebensqualität des Patienten. Motorischen Wiederherstellung richtet sich grundsätzlich nach Neuroplastizität, der grundlegende Mechanismus zugrunde liegt die Rückgewinnung der motorischen Fähigkeiten verloren wegen Gehirn Läsionen2,3. Rehabilitationstherapien basieren somit stark auf Hochdosis-intensives Training und intensive Wiederholung der Bewegungen wieder Stärke und Beweglichkeit. Diese sich wiederholenden Aktivitäten basieren auf täglichen Leben Bewegungen, und Patienten können aufgrund der langsamen motorischen Wiederherstellung und repetitive Übungen, die den Erfolg der Neurorehabilitation4beeinträchtigen können weniger motiviert werden. Intensive Physio- und Ergotherapie gelten nach wie vor wichtigsten Behandlungen, aber neuere außerordentliche Therapien standard Rehabilitation werden zur Optimierung der funktionellen Ergebnisse1untersucht.
Das Aufkommen des Roboter-gestützte Therapien nachweislich großen Wert in der Schlaganfallrehabilitation, Einfluss auf Prozesse der neuronalen Synaptische Plastizität und Reorganisation haben. Sie wurden für die Schulung von Patienten mit beschädigten neurologische Funktionen und Unterstützung von Menschen mit Behinderungen5untersucht. Einer der wichtigsten Vorteile des Hinzufügens von Robotertechnik, Rehabilitive Maßnahmen ist seine Fähigkeit zu hoher Intensität und Hochdosis Ausbildung zu liefern, die sonst ein sehr arbeitsintensiver Prozess6wäre. Die Verwendung von Roboter Therapien zusammen mit virtual-Reality-Computer-Programme, ermöglicht eine sofortige Wahrnehmung und Bewertung der motorischen Wiederherstellung und ändere sich wiederholende Aktionen in sinnvolle, interaktive funktionelle Aufgaben wie Reinigung ein Kochfeld7 . Dies kann Motivation und festhalten an den langen Rehabilitationsprozess Patienten erheben und ermöglicht es, durch die Möglichkeit der Messung und Quantifizierung der Bewegungen, Verfolgung von ihren Fortschritt-5. Integration von Roboter-Therapie in aktuellen Praktiken kann erhöhen die Wirksamkeit und Effektivität der Rehabilitation und ermöglichen die Entwicklung von neuartigen Formen der Übung8.
Therapeutische Rehabilitation Roboter aufgabenspezifische Schulungen und können Endtyp-Effektor Geräte und Exoskelett-Typ Geräte9unterteilt werden. Der Unterschied zwischen diesen Klassifizierungen beziehen sich auf wie Bewegung vom Gerät auf den Patienten übertragen wird. Effektor-Geräte verfügen über einfachere Strukturen, Kontaktaufnahme mit den Patienten Gliedmaßen nur im distalsten Teil, erschwert die Bewegung eines Gelenks zu isolieren. Exoskelett-basierte Geräte verfügen über komplexe Designs mit einer mechanischen Struktur, die das Grundgerüst der Extremität, widerspiegelt, so eine Bewegung des Gelenks des Geräts zu die gleiche Bewegung auf den Patienten Gliedmaßen7,9 produzieren.
Die T-WREX ist ein Exoskelett-basierte Roboter, der ganze Armbewegungen (Schulter, Ellenbogen, Unterarm, Handgelenk und Fingerbewegungen) unterstützt. Die verstellbaren mechanische Arm ermöglicht Variable Supportstufen Schwerkraft, damit Patienten, die einige obere stumpf Funktion, um eine größere aktive Palette von Bewegung in einem dreidimensionalen räumlichen Therapie7,9zu erreichen. Die MIT-MANUS ist eine Anschlussart Effektor-Roboter, der arbeitet in einem einzigen Plan (x- und y-Achse) und ermöglicht eine zweidimensionale Schwerkraft Therapie, Unterstützung Schulter und Ellenbogen Bewegungen ausgeglichen durch Bewegen der Hand des Patienten in die horizontale oder vertikale Ebene9 , 10. beide Roboter haben integrierte Positionssensoren, der oberen Extremität Motorsteuerung und Erholung sowie eine Schnittstelle für Computer-Integration, die 1 ermöglicht quantifizieren können) die Ausbildung von sinnvolle funktionale Aufgaben simuliert in einer virtuellen Lernumgebung und 2) therapeutische Übung Spiele, die helfen, der Praxis der motorische Planung, Auge-Hand Koordination, Aufmerksamkeit und Gesichtsfeld Mängel oder7,9vernachlässigt. Sie auch zum Ausgleich der Auswirkungen der Schwerkraft auf der oberen Extremität ermöglichen und bieten Unterstützung und Hilfe für sich wiederholende und Stereotype Bewegungen der Patienten stark beeinträchtigt. Dies reduziert schrittweise Hilfe, als das Thema verbessert und minimaler Unterstützung oder Widerstand zur Bewegung für leicht Sehbehinderte Patienten9,11gilt.
Eine weitere neue Technik für Neurorehabilitation ist transkranielle Gleichstrom Stimulation (tDCS). tDCS ist eine nicht-invasive Gehirn Stimulationstechnik, die kortikale Erregbarkeit Veränderungen durch den Einsatz von geringer Amplitude Gleichströme angewendet über Kopfhaut Elektroden12,13induziert. Je nach Polarität des Stromflusses kann Gehirn Erregbarkeit durch anodal Stimulation erhöht oder verringert durch cathodal Stimulation2.
Vor kurzem gab es verstärktes Interesse an tDCS, da es nachweislich positive Auswirkungen auf eine Vielzahl von Krankheiten wie Schlaganfall, Epilepsie, Parkinson Erkrankung, Alzheimer Krankheit, Fibromyalgie, psychiatrische Erkrankungen wie Depression, affektive haben Störungen und Schizophrenie2. tDCS hat einige Vorteile, wie seine relativ geringe Kosten, einfache Handhabung, Sicherheit und seltene Nebenwirkungen14. tDCS ist auch eine schmerzlose Methode und kann zuverlässig in klinischen Studien, geblendet sein, da es eine Schein-Modus13hat. tDCS ist wahrscheinlich nicht optimal für die funktionelle Erholung auf eigene; Allerdings zeigt es mehr Versprechen als eine zugehörige Therapie in der Rehabilitation, wie es Gehirn Plastizität15verbessert.
In diesem Protokoll zeigen wir Roboter-assistierte Kombinationstherapie (mit zwei State-of-the-Art-Roboter) und nicht-invasive Neuromodulation mit tDCS als Methode zur Verbesserung der Rehabilitation Ergebnisse, Neben konventionellen Physiotherapie. Die meisten Studien mit Roboter-Therapien oder tDCS habe sie als isolierte Techniken verwendet und nur wenige haben beide, kombiniert die wohltuende Wirkung jenseits jeder Intervention allein verbessern kann. Diese kleinere Versuche zeigten einen möglichen synergistischen Effekt zwischen den beiden Verfahren mit verbesserten motorischen Wiederherstellung und Handlungsfähigkeit8,15,16,17,18, 19. Daher können neue multimodale Therapien Bewegung Erholung jenseits der aktuellen Möglichkeiten verbessern.
In diesem Protokoll beschreiben wir ein standard-Therapie-Protokoll für kombinierte tDCS Stimulation verbunden und Roboter-Therapie, als Ergänzung zu herkömmlichen Rehabilitationsprogramme bei Patienten mit Arm Beeinträchtigungen verwendet. Das Protokoll soll Motorik und Beweglichkeit zu erhöhen. Es ist wichtig, die Rampen auf beobachten und Rampen-aus der tDCS Maschine zur Vermeidung von Nebenwirkungen. tDCS ist eine sichere Technik mit wenigen Nebenwirkungen, die in der Literatur2beschriebe…
The authors have nothing to disclose.
Die Autoren möchten den Spaulding Labor der Neuromodulation und Instituto de Reabilitação Lucy Montoro für ihre großzügige Unterstützung an diesem Projekt bedanken.
tDCS device | Soterix Medical | Soterix Medical 1×1 | |
9V Battery (2x) | |||
Two rubber head bands | |||
Two conductive rubber electrodes | |||
Two sponge electrodes | |||
Cables | |||
NaCl solution | |||
Measurement tape | |||
Armeo Spring Robot | Hocoma | ||
inMotion ARM | Interactive Motion Technologies |