Descreveremos um protocolo para a identificação do rótulo-livre dos subtipos de linfócito usando a imagem latente da fase quantitativa e um algoritmo de aprendizado de máquina. Medições de índice de refração 3D tomograms de linfócitos apresentam 3D informações morfológicas e bioquímicas para células individuais, que é, então, analisadas com um algoritmo de aprendizado de máquina para identificação dos tipos de células.
Descrevemos aqui um protocolo para a identificação do rótulo-livre dos subtipos de linfócito usando a imagem latente da fase quantitativa e aprendizado de máquina. Identificação dos subtipos de linfócito é importante para o estudo da imunologia, bem como diagnóstico e tratamento de várias doenças. Atualmente, métodos padrão para a classificação dos tipos de linfócitos dependem de rotulagem de proteínas de membrana específicas via reações antígeno-anticorpo. No entanto, essas técnicas de rotulagem carregam os riscos potenciais de alterar funções celulares. O protocolo descrito aqui supera esses desafios, explorando contrastes ópticos intrínsecos, medidos pela imagem latente 3D fase quantitativa e um algoritmo de aprendizado de máquina. Medição de tomograms 3D Índice de refração (RI) de linfócitos fornece informações quantitativas sobre morfologia 3D e fenótipos das células individuais. Os parâmetros biofísicos extraídos o tomograms 3D medido do RI são então analisados quantitativamente com um algoritmo de aprendizagem de máquina, permitindo a identificação de rótulo livre de tipos de linfócitos em um nível de célula única. Medimos o 3D tomograms RI de linfócitos B, T CD4 + e CD8 + T e identificados os tipos de células com mais de 80% exatidão. Este protocolo, descreveremos as etapas detalhadas para isolamento de linfócitos, imagem 3D fase quantitativa e aprendizado de máquina para identificar tipos de linfócitos.
Os linfócitos podem ser classificados em vários subtipos, incluindo B, auxiliar T (CD4 +), citotóxicos (CD8 +) T e T reguladora células. Cada tipo de linfócito tem um papel diferente no sistema imune adaptativo; por exemplo, os linfócitos B produzem anticorpos, Considerando que os linfócitos T detectam antígenos específicos, eliminam as células anormais e regulam os linfócitos B. Regulamento e função de linfócitos é firmemente controlado pelo e relacionados a várias doenças, incluindo infecções virais3, cancros1e doenças auto-imunes2. Assim, a identificação dos tipos de linfócitos é importante entender seus papéis fisiopatológicos em tais doenças e para imunoterapia em clínicas.
Atualmente, métodos de classificação de tipos de linfócitos dependem de reações antígeno-anticorpo alvejando proteínas específicas da membrana de superfície ou marcadores de superfície4. Direcionamento de marcadores de superfície é um método preciso e exato para determinar os tipos de linfócitos. No entanto, requer reagentes caros e procedimentos demorados. Além disso, ele carrega os riscos da modificação das estruturas de proteína de membrana e a alteração das funções celulares.
Para superar esses desafios, o protocolo descrito aqui introduz a identificação de rótulo livre de linfócitos tipos usando 3D fase quantitativa de imagem (QPI) e máquina de aprendizagem5. Esse método permite a classificação dos tipos de linfócitos em um nível de célula única com base nas informações morfológicas extraídas de imagem em 3D livre de rótulo de linfócitos individuais. Ao contrário de técnicas de microscopia de fluorescência convencional, QPI utiliza o índice de refração (RI) distribuições (intrínsecas propriedades óticas de células vivas e tecidos) como contraste óptico6,7. Os tomograms RI de linfócitos individuais representam informação fenotípica específica para os subtipos de linfócitos. Neste caso, para utilizar sistemicamente 3D tomograms RI de linfócitos individuais, foi utilizado um algoritmo de aprendizado de máquina supervisionado.
Usando várias técnicas QPI, os 3D tomograms RI de células têm sido ativamente utilizados para o estudo da fisiopatologia da célula porque eles fornecem um rótulo livre, quantitativa de imagem capacidade8,9,10, 11,12,13. Além disso, as distribuições de RI 3D de células individuais podem fornecer informações morfológicas, bioquímicas e biomecânicas sobre células. 3D do RI tomograms tenha sido previamente utilizados nos campos da hematologia14,15,16,17, doenças infecciosas18,19, 20, imunologia21célula biologia22,23, inflamação24, câncer25, neurociência26,27, biologia do desenvolvimento28, toxicologia 29e Microbiologia12,30,31,32.
Embora 3D RI tomograms fornecem informações detalhadas morfológicas e bioquímicas das células, a classificação dos subtipos de linfócito é difícil de alcançar por simplesmente imagem 3D RI tomograms5. Explorarem sistematicamente e quantitativamente a medida tomograms RI 3D para a classificação do tipo de célula, utilizamos um algoritmo de aprendizado de máquina. Recentemente, diversos trabalhos têm sido relatados em qual fase quantitativa, analisaram-se imagens de células com várias máquina aprendendo algoritmos33, incluindo a detecção de microorganismos34, classificação de género bacteriana35 , 36, detecção rápida e livre de rótulo de esporos de antraz37, automatizado de análise de espermatozoides38, análise de células de câncer39,40e detecção de ativação de macrófagos41.
Este protocolo fornece etapas detalhadas para executar livre de etiqueta de identificação de tipos de linfócitos no nível da célula individual usando 3D QPI e aprendizado de máquina. Isto inclui: isolamento 1) linfócitos do sangue de rato, 2) linfócito classificação através de fluxo cytometry, QPI 3) 3D, 4) quantitativos extração do 3D do RI tomograms e aprendizado 5) supervisionado para a identificação de tipos de linfócitos.
Apresentamos um protocolo que permite a identificação de rótulo livre dos tipos de linfócitos, explorando a imagem 3D fase quantitativa e aprendizado de máquina. Passos críticos do presente protocolo são fase quantitativa de imagem e o recurso seleção. Para a ideal de imagem holográfica, a densidade de células deve ser controlada como descrito acima. Estabilidade mecânica das células também é importante para obter uma distribuição de RI 3D precisa porque movimentos celulares flutuantes ou vibracionais pe…
The authors have nothing to disclose.
Este trabalho foi apoiado pela KAIST BK21 + programa, Tomocube, Inc. e da National Research Foundation da Coreia (2015R1A3A2066550, 2017M3C1A3013923, 2018K 000396). Y. Jo reconhece apoio do KAIST presidencial Fellowship e bolsa de ciência biomédica Asan Foundation.
Mouse | Daehan Biolink | C57BL/6J mice | gender and age-matched, 6 – 8 weeks |
Falcon conical centrifuge tube | ThermoFisher Scientific | 14-959-53A | 15 mL |
Phosphate-buffered saline | Sigma-Aldrich | 806544-500ML | |
Ammonium-chloride-potassium lysing buffer | ThermoFisher Scientific | A1049201 | |
RPMI-1640 medium | Sigma-Aldrich | R8758 | |
Fetal bovine serum | ThermoFisher Scientific | 10438018 | |
Antibody | BD Biosciences | 553140 (RRID:AB_394655) | CD16/32 (clone 2.4G2) |
Antibody | BD Biosciences | 555275 (RRID:AB_395699) | CD3ε (clone 17A2) |
Antibody | Biolegnd | 100734 (RRID:AB_2075238) | CD8α (clone 53-6.7) |
Antibody | BD Biosciences | 557655 (RRID:AB_396770) | CD19 (clone 1D3) |
Antibody | BD Biosciences | 557683 (RRID:AB_396793) | CD45R/B220 (clone RA3-6B2) |
Antibody | BD Biosciences | 552878 (RRID:AB_394507) | NK1.1 (clone PK136) |
Antibody | eBioscience | 11-0041-85 (RRID:AB_464893) | CD4 (clone GK1.5) |
DAPI | Roche | 10236276001 | 4,6-diamidino-2-phenylindole |
Flow cytometry | BD Biosciences | Aria II or III | |
Imaging chamber | Tomocube, Inc. | TomoDish | |
Holotomography | Tomocube, Inc. | HT-1H | |
Holotomography imaging software | Tomocube, Inc. | TomoStudio | |
Image professing software | MathWorks | Matlab R2017b |