Earth-abundant minerals play important roles in the natural hydrothermal systems. Here, we describe a reliable and cost-effective method for the experimental investigation of organic-mineral interactions under hydrothermal conditions.
Organic-mineral interactions are widely occurring in hydrothermal environments, such as hot springs, geysers on land, and the hydrothermal vents in the deep ocean. Roles of minerals are critical in many hydrothermal organic geochemical processes. Traditional hydrothermal methodology, which includes using reactors made of gold, titanium, platinum, or stainless-steel, is usually associated with the high cost or undesired metal catalytic effects. Recently, there is a growing tendency for using the cost-effective and inert quartz or fused silica glass tubes in hydrothermal experiments. Here, we provide a protocol for carrying out organic-mineral hydrothermal experiments in silica tubes, and we describe the essential steps in the sample preparation, experimental setup, products separation, and quantitative analysis. We also demonstrate an experiment using a model organic compound, nitrobenzene, to show the effect of an iron-containing mineral, magnetite, on its degradation under a specific hydrothermal condition. This technique can be applied to study complex organic-mineral hydrothermal interactions in a relatively simple laboratory system.
Hydrothermal environments (i.e., aqueous media at elevated temperatures and pressures) are ubiquitous on Earth. The hydrothermal chemistry of organic compounds plays an essential role in a wide range of geochemical settings, such as organic sedimentary basins, petroleum reservoirs, and the deep biosphere1,2,3. Organic carbon transformations in hydrothermal systems occur not only in pure aqueous medium but also with dissolved or solid inorganic materials, such as Earth-abundant minerals. Minerals have been found to dramatically and selectively influence the hydrothermal reactivity of various organic compounds,1,4,5 but how to identify the mineral effects in complex hydrothermal systems still remains as a challenge. The goal of this study is to provide a relatively simple experimental protocol for studying mineral effects on hydrothermal organic reactions.
The laboratory studies of hydrothermal reactions traditionally use robust reactors that are made of gold, titanium, or stainless steel6,7,8,9. For example, gold bags or capsules have been favorably used, because gold is flexible, and it allows the sample pressure to be controlled by pressurizing water externally, which avoids generating a vapor phase inside the sample. However, these reactors are expensive and could be associated with potential metal catalytic effects10. Hence, it is imperative to find an alternative method with low cost but high reliability for these hydrothermal experiments.
In recent years, reaction tubes made of quartz or fused silica glass have been more frequently applied to hydrothermal experiments11,12,13. Compared to precious gold or titanium, quartz or silica glass is considerably cheaper but also the strong material. More importantly, quartz tubes have shown little catalytic effects and can be as inert as gold for the hydrothermal reactions11,14. In this protocol, we describe a general method for conducting small-scale hydrothermal organic-mineral experiments in thick-walled silica tubes. We present an example experiment using a model compound (i.e., nitrobenzene) in the presence/absence of an iron-oxide mineral (i.e., magnetite) in a 150 °C hydrothermal solution, in order to show the mineral effect, as well as to demonstrate the effectiveness of this method.
1. Prepare the Sample for Hydrothermal Experiment
2. Set Up the Hydrothermal Experiment
3. Analyze the Sample after the Experiment
To demonstrate how to use this approach to study hydrothermal organic-mineral interactions, a simple experiment using a model compound, nitrobenzene, was conducted with mineral magnetite (Fe3O4) at a hydrothermal condition of 150 °C and 5 bars for 2 h. To show the mineral effect, an experiment of nitrobenzene without mineral was also performed under the same hydrothermal condition. As shown in Figure 1a, two silica tubes were made following the protocols prior to the hydrothermal experiment. The sealed tube with no mineral was clear, and the tube with magnetite exhibited a black mineral color inside. The starting concentrations of nitrobenzene were both 0.1 M (in 0.3 mL deionized and deoxygenated water) and the added magnetite was 13.9 mg. After the hydrothermal process, the tube with no mineral showed no color change, whereas the tube with magnetite turned into a brown color (Figure 1b), which implies an oxidation reaction from magnetite to hematite (Fe2O3). Based on gas chromatography analysis, the effect of magnetite was revealed by the nitrobenzene conversions between the experiments (Figure 2). In the no-mineral experiment, the calculated conversion for nitrobenzene was 5.2%; however, in the presence of magnetite, the nitrobenzene conversion was 30.3%, which increased by a factor of 6. Additionally, duplicate but independent experiments were conducted, in which one standard deviation was calculated to be 2.1% and 1.4% for the no-mineral and magnetite experiments, respectively (Figure 2). These results suggest that magnetite, probably through redox reactions, can significantly promote the reaction of nitrobenzene at given hydrothermal conditions. This protocol was found to be successful with relatively high reproducibility in quantifying hydrothermal organic degradation under the influence of minerals.
Figure 1: Example experiment with nitrobenzene in the presence or absence of magnetite. (a) Silica glass tubes before the hydrothermal experiment; (b) silica glass tubes after the hydrothermal experiment. Note that there is a color change in the silica tube with magnetite. Please click here to view a larger version of this figure.
Figure 2: Experimental results of nitrobenzene conversion after 2 h under hydrothermal conditions at 150 °C and 5 bar. The reaction conversions are calculated by the amount of nitrobenzene reacted after the reaction. Error bars are one standard deviation of the mean of duplicate experiments. The difference between the no-mineral and magnetite experiments clearly shows the mineral effect on hydrothermal degradation of nitrobenzene. Please click here to view a larger version of this figure.
In this study, we used nitrobenzene with mineral magnetite as an example to demonstrate how to evaluate mineral effects on hydrothermal organic reactions. Although the experiments are carried out in small silica glass tubes, highly reproducible results are observed in the magnetite experiments, i.e., 30.3 ± 1.4% in nitrobenzene conversion, which suggests the effectiveness and the reliability of this hydrothermal protocol. In the no-mineral experiments, the conversion of nitrobenzene is 5.2 ± 2.1%, which shows a lower reproducibility than the mineral experiment. The relatively high uncertainty in the no-mineral experiment could be due to the low conversion of the starting material, considering the µL (or mg) of samples used in the small tube. To improve reproducibility for low-conversion reactions, silica tubes with larger internal volume are suggested. This protocol could be particularly useful for small-scale experiments when the amount of sample is limited, or the cost of chemical is high. Both mineral and non-mineral hydrothermal experiments can be conducted by this protocol.
As described earlier, this hydrothermal protocol has certain advantages over other traditional methods, such as low cost of reaction tubes, facile operation procedures, and low or negligible catalytic effect11,14. However, due to the limited mineral strength and stability, quartz tubes may cause failure at temperatures above 450 °C or pressures above 400 bar15, which may not be suitable for long-duration hydrothermal experiments near or above the critical point of water. Another limitation of this method is that, at high temperature (e.g., > 400 °C), quartz may also be subject to dissolution, which could produce dissolved silica species that interfere organic hydrothermal reactions. Since the dissolution of silica may also be influenced by the solution pH, the presence of salts, acids or bases, the tube survival temperature could be lower than that in the pure water system, and these factors should also be considered in high-temperature experiments. In addition, compared to flexible reactor materials such as gold, silica tubes are usually associated with a headspace volume that cannot be reduced by applying external pressure, which could allow some gas-phase reactions to occur.
Furthermore, the volume of liquid inside the silica tube could be critical in determining the success of the experiment. Based on the thermodynamics calculation using SUPCRT9216, for example, the saturation pressure of water (Psat) can reach more than 85 bar at 300 °C, and the volume of liquid water inside the silica tube can expand by 30%. To survive at high temperatures and pressures, thicker silica glass tubes (i.e., ID/OD ratio <0.3) with larger headspace should be used. Even with the same diameter, silica tubes from different manufacturers may cause failure at different temperatures. Therefore, the temperature and pressure restrain for each type of the silica tubes should be thoroughly tested before use. Note that borosilicate glass is excluded from this hydrothermal protocol because it is reactive and typically cannot handle temperatures above 300 °C. In addition, loading the organic compounds that are "sticky" or viscous into narrow silica tubes may be challenging, in which case large diameter tubes (e.g., 6 mm ID x 12 mm OD) would be recommended.
The authors have nothing to disclose.
We thank the H.O.G. group at Arizona State University for developing the initial methodology of these hydrothermal experiments, and in particular, we thank I. Gould, E. Shock, L. Williams, C. Glein, H. Hartnett, K. Fecteau, K. Robinson, and C. Bockisch, for their guidance and helpful assistance. Z. Yang and X. Fu were funded by startup funds from Oakland University to Z. Yang.
Chemicals: | |||
Dichloromethane | VWR | BDH23373.400 | |
Dodecane | Sigma-Aldrich | 297879 | |
Nitrobenzene | Sigma-Aldrich | 252379 | |
Fe2O3 | Sigma-Aldrich | 310050 | |
Fe3O4 | Sigma-Aldrich | 637106 | |
Supplies: | |||
Silica tube | |||
Vacuum pump | WELCH | 2546B-01 | |
Vacuum line | |||
Oven | Hewlett Packard | 5890 | |
Thermocouple | BENETECH | GM1312 | |
Gas chromatography | Agilent | 7820A |