Summary

用金纳米粒子-嵌入式膜过滤法选择性脱盐放射性碘阴离子的有效方法

Published: July 13, 2018
doi:

Summary

利用金纳米颗粒固定化醋酸纤维素膜过滤器, 对几种水溶液中的放射性碘进行快速、离子选择性脱盐的有效方法进行了描述。

Abstract

在这里, 我们演示了一个详细的协议, 制备纳米材料-嵌入复合膜及其在高效和离子选择性去除放射性 iodines 的应用。利用柠檬酸稳定的金纳米粒子 (平均直径:13 nm) 和醋酸纤维素膜, 可以很容易地制备出金纳米颗粒的醋酸纤维素膜 (Au 凸轮)。在高浓度无机盐和有机分子的存在下, 金凸轮上的纳米吸附剂高度稳定。水溶液中的碘离子可以迅速被这种工程膜捕获。通过采用含金凸轮过滤单元的过滤工艺, 在短时间内实现了优异的去除效率 (> 99%) 以及离子选择性脱盐效果。而且, 在没有显著降低性能的情况下, Au 凸轮提供了良好的可重用性。结果表明, 采用工程化混合膜技术的现有工艺将是对液体废弃物中放射性碘进行大规模净化的一个有前途的过程。

Introduction

几十年来, 医疗机构、研究设施和核反应堆产生了大量放射性液体废料。这些污染物常常是对环境和人类健康的明显威胁,123。特别是放射性碘被认为是核电站事故中最危险的因素之一。例如, 一份关于福岛和切尔诺贝利核反应堆的环境报告表明, 释放的放射性 iodines 的数量包括131i (t1/2 = 8.02 天) 和129i (t1/2 =1570万年) 对环境大于其他放射性核素4,5。特别是, 这些放射性同位素的暴露导致了人体甲状腺6的高吸收和富集。此外, 释放的放射性 iodines 可导致土壤、海水和地下水的严重污染, 因为它们在水中的溶解度很高。因此, 研究了大量使用各种无机和有机吸附剂的修复过程, 以捕获含水废物78910中的放射性 iodines。,11,12,13,14,15,16,17,18,19,20. 尽管为开发先进的吸附剂系统作出了广泛的努力, 但在连续流动条件下, 建立一种能表现出令人满意性能的净化方法非常有限。最近, 我们报告了一个新的脱盐过程, 显示良好的去除效率, 离子选择性, 可持续性, 并利用纳米金纳米复合材料 (AuNPs)21,22,23. 在其中, 金纳米粒子–嵌入的醋酸纤维素膜 (Au 凸轮) 促进了与现有吸附剂材料相比的连续流系统中碘离子的高效脱盐。此外, 整个程序可以在短时间内完成, 这是处理医疗和工业应用后产生的核废料的另一个好处。本手稿的总体目标是提供一步一步的协议, 为准备的金凸轮24。我们还演示了一个快速和方便的过滤过程中的离子选择性捕获放射性碘使用工程复合膜。本报告中的详细议定书将为纳米材料在环境科学研究领域中的应用提供有益的参考。

Protocol

1. 柠檬酸稳定金纳米粒子的合成 将两颈的圆底烧瓶 (250 毫升) 和一条带水的磁力搅拌棒洗净, 将浓盐酸和浓硝酸混合在3:1 的体积比上。注意: 水溶液是极具腐蚀性的, 可能会导致爆炸或皮肤烧伤, 如果不处理极端谨慎。 用去离子水彻底冲洗玻璃器皿, 除去残留的水酸。 将120毫升的四氯金酸溶液 (HAuCl4, 1 毫米) 添加到双颈圆底烧瓶 (250 毫升) 中, 并在恒定搅拌下将其加…

Representative Results

我们展示了用柠檬酸稳定的 AuNPs 和醋酸纤维素膜制作金凸轮的简单方法 (图 1a)。用 SEM 观察了金凸轮的表面, 表明纳米材料在纤维素纤维上稳定地结合在一起 (图 2)。在膜上被嵌顿的纳米颗粒保持稳定, 不通过连续洗涤, 如1.0 米氯化钠等水溶液释放。金凸轮的吸附能力约为1克 AuNPs24μmol 碘负离子的?…

Discussion

近年来, 根据其吸附技术2526的具体功能, 开发了各种工程化纳米材料和膜, 以去除水中的有害放射性金属和重金属,27,28,29,30,31,32,33,34,

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国国家研究基金会的研究补助金 (赠款号: 2017M2A2A6A01070858) 的支持。

Materials

Hydrochloric acid DUKSAN 1129
Nitric acid  JUNSEI 37335-1250
Chloroautic chloride trihydrate (HAuCl4·3H2O) Sigma Aldrich 254169
Sodium citrate tribasic dihydrate Sigma Aldrich 71402
[125I]NaI  Perkin-Elmer NEZ033A010MC
Sodium chloride Sigma Aldrich S9888
Sodium iodide Sigma Aldrich 383112
Sodium hydroxide Sigma Aldrich S5881
Lithium L-lactate Sigma Aldrich L2250 Synthetic urine
Citric acid Sigma Aldrich C1909 Synthetic urine
Sodium hydrogen carbonate JUNSEI 43305-1250 Synthetic urine
Urea Sigma Aldrich U1250 Synthetic urine
Calcium chloride JUNSEI 18230-0301 Synthetic urine
Magnesium sulfate SAMCHUN M0146 Synthetic urine
Potassium dihydrogen phosphate JUNSEI 84185A1250 Synthetic urine
Dipotassium hydrogen phosphate JUNSEI 84120-1250 Synthetic urine
Sodium sulfate JUNSEI 83260-1250 Synthetic urine
Ammonium chloride Sigma Aldrich A9434 Synthetic urine
Sea water Sigma Aldrich S9148
1x PBS Thermo SH30256.01
Cellulose acetate membranes (pore size: 0.20 μm, diameter: 25 mm) Advantec MFS 25CS045AS
Cellulose acetate membranes (pore size: 0.20 μm, diameter: 47 mm) Advantec MFS C045A047A
47 mm Glass Microanalysis Holders Advantec MFS KG47(311400)
Petri dish (50 mm diameter ´ 15 mm height) SPL 10050
Gamma counter Perkin-Elmer 2480 WIZARD2 Model number
UV-vis spectrophotometer Thermo GENESYS 10 Model number
Transmission electron microscopy Hitachi H-7650 Model number
Field Emission Scanning electron microscope FEI Verios 460L Model number

References

  1. Ojovan, M. I. . Handbook of Advanced Radioactive Waste Conditioning Technologies. , (2011).
  2. Abdel Rahman, R. O., Ibrahim, H. A., Hung, Y. -. T. Liquid Radioactive Wastes Treatment: A Review. Water. 3, 551-565 (2011).
  3. Khayet, M., Matsuura, T. Radioactive decontamination of water. Desalination. 321, 1-2 (2013).
  4. McLaughlin, P. D., Jones, B., Maher, M. M. An update on radioactive release and exposures after the Fukushima Dai-ichi nuclear disaster. The British Journal of Radiolog. 85, 1222-1225 (2012).
  5. Chernobyl Forum Expert Group ‘Environment’. Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience. International Atomic Energy Agency. , (2006).
  6. Hou, X., et al. Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environmental Science & Technology. 47, 3091-3098 (2013).
  7. Mu, W., Yu, Q., Li, X., Wei, H., Jian, Y. Adsorption of radioactive iodine on surfactant-modified sodium niobate. RSC Advances. 6, 81719-81725 (2016).
  8. Yang, D., Liu, H., Liu, L., Sarina, S., Zheng, Z., Zhu, H. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale. 5, 11011-11018 (2013).
  9. Yang, D., et al. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angewandte Chemie International Edition. 50, 10594-10598 (2011).
  10. Cheng, Q., et al. Adsorption of gaseous radioactive iodine by Ag/13X zeolite at high temperatures. Journal of Radioanalytical and Nuclear Chemistry. 303, 1883-1889 (2015).
  11. Bennett, T. D., Saines, P. J., Keen, D. A., -C, T. a. n. J., Cheetham, A. K. Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine. Chemistry – A European Journal. 19, 7049-7055 (2013).
  12. Huang, P. S., Kuo, C. H., Hsieh, C. C., Horng, Y. C. Selective capture of volatile iodine using amorphous molecular organic solids. Chemical Communications. 48, 3227-3229 (2012).
  13. Chapman, K. W., Chupas, P. J., Nenoff, T. M. Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation. Journal of the American Chemical Society. 132, 8897-8899 (2010).
  14. Watanabe, Y., et al. Novel Long-Term Immobilization Method for Radioactive Iodine-129 Using a Zeolite/Apatite Composite Sintered Body. ACS Applied Materials & Interfaces. 1, 1579-1584 (2009).
  15. Massasso, G., et al. Molecular iodine adsorption within Hofmann-type structures M(L)[M'(CN)4] (M = Ni, Co; M’ = Ni, Pd, Pt): impact of their composition. Dalton Transactions. 44, 19357-19369 (2015).
  16. Falaise, C., Volkringer, C., Facqueur, J., Bousquet, T., Gasnot, L., Loiseau, T. Capture of iodine in highly stable metal-organic frameworks: a systematic study. Chemical Communications. 49, 10320-10322 (2013).
  17. Sava, D. F., et al. Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society. 133, 12398-12401 (2011).
  18. Zhang, Z. J., et al. A new type of polyhedron-based metal-organic frameworks with interpenetrating cationic and anionic nets demonstrating ion exchange, adsorption and luminescent properties. Chemical Communications. 47, 6425-6427 (2011).
  19. Li, G., et al. Highly efficient I2 capture by simple and low-cost deep eutectic solvents. Green Chemistry. 18, 2522-2527 (2016).
  20. Yan, C., Mu, T. Investigation of ionic liquids for efficient removal and reliable storage of radioactive iodine: a halogen-bonding case. Physical Chemistry Chemical Physics. 16, 5071-5075 (2014).
  21. Choi, M. H., et al. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chemical Communications. 53, 3937-3940 (2017).
  22. Kim, Y. H., et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small. 7, 2052-2060 (2011).
  23. Choi, M. H., et al. Gold-Nanoparticle-Immobilized Desalting Columns for Highly Efficient and Specific Removal of Radioactive Iodine in Aqueous Media. ACS Applied Materials & Interfaces. 8, 29227-29231 (2016).
  24. Mushtaq, S., et al. Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environmental Science: Nano. 4, 2157-2163 (2017).
  25. Awual, M. R., Ismael, M. Efficient gold(III) detection, separation and recovery from urban mining waste using a facial conjugate adsorbent. Sensors and Actuators B: Chemical. 196, 457-466 (2014).
  26. Awual, M. R., Hasan, M. M., Naushad, M., Shiwaku, H., Yaita, T. Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sensors and Actuators B: Chemical. 209, 790-797 (2015).
  27. Awual, M. R., Hasan, M. M. Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery. Journal of Industrial and Engineering Chemistry. 21, 507-515 (2015).
  28. Awual, M. R. Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chemical Engineering Journal. 303, 539-546 (2016).
  29. Awual, M. R., Miyazaki, Y., Taguchi, T., Shiwaku, H., Yaita, T. Encapsulation of cesium from contaminated water with highly selective facial organic-inorganic mesoporous hybrid adsorbent. Chemical Engineering Journal. 291, 128-137 (2016).
  30. Awual, M. R., Yaita, T., Taguchi, T., Shiwaku, H., Suzuki, S., Okamoto, Y. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. Journal of Hazardous Materials. 278, 227-235 (2014).
  31. Awual, M. R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y., Yaita, T. Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chemical Engineering Journal. 242, 127-135 (2014).
  32. Awual, M. R., et al. Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chemical Engineering Journal. 343, 118-127 (2018).
  33. Awual, M. R. New type mesoporous conjugate material for selective optical copper(II) ions monitoring & removal from polluted waters. Chemical Engineering Journal. 307, 85-94 (2017).
  34. Awual, M. R. Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chemical Engineering Journal. 307, 456-465 (2017).
  35. Awual, M. R. Solid phase sensitive palladium(II) ions detection and recovery using ligand based efficient conjugate nanomaterials. Chemical Engineering Journal. 300, 264-272 (2016).
  36. Awual, M. R. Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chemical Engineering Journal. 289, 65-73 (2016).
  37. Awual, M. R. A novel facial composite adsorbent for enhanced copper (II) detection and removal from wastewater. Chemical Engineering Journal. 266, 368-375 (2015).
  38. Kaushik, M., Moores, A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry. 18, 622-637 (2016).
  39. Jang, H., Kim, Y. K., Ryoo, S. R., Kim, M. H., Min, D. H. Facile synthesis of robust and biocompatible gold nanoparticles. Chemical Communication. 46, 583-585 (2010).
  40. Bolisetty, S., Mezzenga, R. Amyloid-carbon hybrid membranes for universal water purification. Nature Nanotechnology. 11, 365-371 (2016).
  41. Zakrzewska-Trznadel, G. Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination. 321, 119-130 (2013).
  42. Rana, D., Matsuura, T., Kassim, M. A., Ismail, A. F. Radioactive decontamination of water by membrane processes – A review. Desalination. 321, 77-92 (2013).

Play Video

Cite This Article
Shim, H. E., Mushtaq, S., Jeon, J. An Efficient Method for Selective Desalination of Radioactive Iodine Anions by Using Gold Nanoparticles-Embedded Membrane Filter. J. Vis. Exp. (137), e58105, doi:10.3791/58105 (2018).

View Video