Excavation of plant roots from the field as well as processing of samples into endosphere, rhizosphere, and soil are described in detail, including DNA extraction and data analysis methods. This paper is designed to enable other laboratories to use these techniques for the study of soil, endosphere, and rhizosphere microbiomes.
Plant and soil microbiome studies are becoming increasingly important for understanding the roles microorganisms play in agricultural productivity. The purpose of this manuscript is to provide detail on how to rapidly sample soil, rhizosphere, and endosphere of replicated field trials and analyze changes that may occur in the microbial communities due to sample type, treatment, and plant genotype. The experiment used to demonstrate these methods consists of replicated field plots containing two, pure, warm-season grasses (Panicum virgatum and Andropogon gerardii) and a low-diversity grass mixture (A. gerardii, Sorghastrum nutans, and Bouteloua curtipendula). Briefly, plants are excavated, a variety of roots are cut and placed in phosphate buffer, and then shaken to collect the rhizosphere. Roots are brought to the laboratory on ice and surface sterilized with bleach and ethanol (EtOH). The rhizosphere is filtered and concentrated by centrifugation. Excavated soil from around the root ball is placed into plastic bags and brought to the lab where a small amount of soil is taken for DNA extractions. DNA is extracted from roots, soil, and rhizosphere and then amplified with primers for the V4 region of the 16S rRNA gene. Amplicons are sequenced, then analyzed with open access bioinformatics tools. These methods allow researchers to test how the microbial community diversity and composition varies due to sample type, treatment, and plant genotype. Using these methods along with statistical models, the representative results demonstrate there are significant differences in microbial communities of roots, rhizosphere, and soil. Methods presented here provide a complete set of steps for how to collect field samples, isolate, extract, quantify, amplify, and sequence DNA, and analyze microbial community diversity and composition in replicated field trials.
Microbiome research has important implications for understanding and manipulating ecosystem processes such as nutrient cycling, organic matter turnover, and the development or inhibition of soil pathogens1,2. This area of research also holds great potential for understanding the impacts of soil microbes on the productivity of natural plant communities and agroecosystems. While there are many studies that have focused on the soil microbiome in natural ecosystems, fewer have focused on plant rhizosphere and endosphere microbes in agroecosystems3. In Nebraska, agriculture dominates the landscape across large parts of the state, making the studies of these soils where agriculturally important crops are grown a vital topic for research. The aim of this methods paper is to provide researchers with a standard set of protocols to describe the microbes present in agroecosystems, to determine how plant roots modify the microbial communities in the rhizosphere and endosphere, and to eventually understand the functions these microbes play in soil health and plant productivity.
The method presented here differs slightly from methods used by others4,5 in that this paper is aimed at learning which microbes are exclusively inside the root and how they differ from microbes immediately outside the root in the rhizosphere. The amplicon sequencing used in this study identifies the microbial taxa found in the DNA sample and allows investigators to determine how the communities change depending on sample type or treatment. One of the key differences between this protocol and a very similar protocol used by Lundberg et al.6 is that instead of sonication, this protocol uses surface sterilization with bleach and ethanol to remove the rhizosphere from the roots. Others have also used surface sterilization effectively7,8,9,10. These methods are not more advantageous than other methods, but slightly different. These methods are particularly well suited for large field experiments because with enough people it is possible to process over 150 field plots per day, which adds up to approximately 450 samples when partitioned into endosphere, rhizosphere, and soil. This manuscript describes in detail the methods used to sample in the field, process the material in the lab, extract and sequence the DNA, and provides a brief overview of the steps to analyze the resulting sequencing data.
1. Field Site Description
2. Collection and Processing of Soil, Rhizosphere, and Root Field Samples
3. Processing of Field Samples in the Laboratory
4. Preparation of Processed Root Samples for DNA Extractions.
5. Extraction of DNA from Soil and Rhizosphere Samples in 96-well Format
6. Extraction of DNA from Root Samples in 96-well Format.
7. Amplification and Sequencing the Isolated DNA.
The representative results presented in this manuscript come from a field site established in 2012 at the University of Nebraska-Lincoln Agriculture Research Division Farm near Mead, NE. Prior to the experiment, the site had been managed as a corn-soybean rotation. The study site was located on three different types of soils, but the data was analyzed as if all changes in measured soil properties were due to the treatments imposed.
The field site contained two, pure, stands of switchgrass (P. virgatum cv Liberty) and big bluestem (A. gerardii) as well as a low-diversity grass mixture containing big bluestem, indiangrass (S. nutans), and 'Butte' sideoats grama (B. curtipendula). The three warm-season grass plots were in a randomized complete block design that was replicated three times. Nested into the three different grass plots were two nitrogen (N) fertilization treatments, which were 56 (N1) and 112 (N2) kg N ha-1 of applied urea. At the time of microbiome sampling at the end of the growing season, the soil contained 8.0 ± 1.1 (mean ± SD) ppm nitrate in the plots fertilized with 112 kg N ha-1 and 6.8 ± 0.7 (mean + SD) ppm nitrate in the plots fertilized with 56 kg N ha-1. The plots had been fertilized once a year. The warm-season grass plots were designated as the main plots (8000 m2) and N treatments were the split plots (4000 m2). Big bluestem was seeded as a 50:50 blend of 'Bonanza' and 'Goldmine' and Indiangrass was seeded as a 50:50 blend of 'Scout' and 'Warrior'. The plots were planted in 2012, and the first N application occurred in the spring of 2013.
The soil and root sampling was conducted on September 15, 2014. The work described below was conducted on a field that was set up as a split-plot randomized design with three replicates (Figure 1). The average sequencing depth of all the samples for endosphere were as follows: 4871 ± 5711 (mean ± SD), rhizosphere: 40726 ± 14684, soil: 38184 ± 9043. One of the largest sources of variation in these experiments, using the methods described, is the difference in microbial communities found between sample types (Figure 2). In this representative data set, the rhizosphere and soil appear to be more similar in composition to each other than the endosphere (Figure 2A). However, there were also highly significant (p = 0.001) differences in microbial community composition between rhizosphere and soil (Figure 2B). The total variation accounted for in these experiments analyzed by sample type was 26%.
Alpha diversity analysis showed that the microbial communities in the endosphere were lower in sample diversity as compared to soil and rhizosphere (Figure 3). The only significant differences in diversity between the grass species in any compartment were between the endosphere samples of big bluestem and switchgrass, with switchgrass having significantly higher microbial species diversity (Figure 3). The relative abundance analysis (Figure 4) highlights the dominance of Proteobacteria followed by Actinobacteria in all sample types. Soil and rhizosphere are also dominated by Acidobacteria and Chloroflexi whereas the endosphere had a larger relative abundance of Bacteriodetes.
In this experiment, plants were grown with two different amounts of N fertilizer and therefore we analyzed the data to determine whether there were treatment effects. Treatment effects accounted for 12% of the total variation but were not significantly different although in the ordination the two treatments look different (Figure 5). This highlights the importance of statistical analyses for these datasets rather than visual inspection or qualitative judgments.
Plant-influenced differences in the microbiome of plant tissues and soil were visualized using a constrained method of ordination. Statistical differences were determined using a PERMANOVA analysis to test whether specific variables, such as species, result in significantly different microbial community composition between samples. When all the sample types were analyzed together, a highly significant difference was found in microbial community composition due to plant species (Figure 6). In this experiment, the amount of variation accounted for by plant species was 6.7%. Finally, each sample type was analyzed individually to determine which of the sample types might be driving the significant plant species effect. Only in the endosphere was there a highly significant difference (p = 0.001) between the microbial community compositions of the different plant species (Figure 7). In the other sample types, the species effect was not significant when analyzed individually. In the endosphere, the percent variation due to species was 27%, whereas it was lower in rhizosphere (18%) and soil (15%). This further highlights the importance of analyzing each tissue type individually.
Figure 1: Example of the experimental field design. Experimental field design illustrating a randomized complete block design in triplicate of the field site located at the University of Nebraska-Lincoln Eastern Nebraska Research and Extension Center near Mead, NE. For full site description see the Results section. N1 is the low (56 kg N ha-1 urea) and N2 (112 kg N ha-1 urea) is the higher nitrogen rate that was applied. Please click here to view a larger version of this figure.
Figure 2: Beta diversity analysis comparing the microbial composition in the different sample types including endosphere, rhizosphere, and soil from the perennial grass sampling in 2014. The analysis was carried out using a Python script in QIIME1.9.1 to produce the Bray-Curtis dissimilarity matrix. Principal coordinates analysis (PCoA) based on the Bray-Curtis dissimilarity matrix was visualized in RStudio. PCoA1 and PCoA2 indicate the first and second largest variance explained by the PCoA analysis. PERMANOVA statistical analysis was performed to determine the significance between sample types, and the p value is shown on the top right corner. Each symbol in the figures represent the entire microbial community for each sample. (A) Endosphere, rhizosphere and soil sample types were analyzed together. All 87 samples were rarefied to 486 sequences per sample. (B) Rhizosphere and soil samples were analyzed together. All 59 samples were rarefied with 8231 sequences. Please click here to view a larger version of this figure.
Figure 3: Alpha diversity analysis using Shannon index for each species in the endosphere, rhizosphere and soil. The analysis was carried out using a Python script in the QIIME1.9.1. Rarefaction was done for the endosphere, rhizosphere, and soil sample types respectively with 486, 17154 and 8231 sequences per sample. Boxes indicate the 25th and 75th percentiles (first and third quartiles). The horizontal line within the box denotes the median and the red plus shows the mean. Whiskers show the range of the data excluding outliers (which are shown as black dots) that fell more than 1.5 times the interquartile range (n = 6 for each sample except for sideoats grama mix where n = 5). The Shannon index of all five species in the endosphere were lower than both rhizosphere and soil. Non-parametric Wilcoxon rank sum test was used to determine the significance between the species and only significant differences between species were shown on top of the boxes. Please click here to view a larger version of this figure.
Figure 4: Relative abundance on the phylum level in the endosphere, rhizosphere, and soil. Samples were analyzed to compare the abundance of microbial phyla among different samples types (n = 29 for each sample type). The analysis was carried out using a Python script in QIIME1.9.1 from the OTU table. The different colors inside the pie chart denote the phyla. The percentage indicates the relative abundance of each phylum in each sample type. The phylum information was annotated using the Ribosomal Database Project classifier (RDP)25. Please click here to view a larger version of this figure.
Figure 5: Analysis using treatment as constraining factor between all sample types. Canonical analysis of principal coordinates (CAP) analysis was performed to determine whether there were differences in microbial community composition between treatments. For each N treatment, n = 42 for N1 (56 kg N ha-1) and n = 45 for N2 (112 kg N ha-1). The Bray-Curtis dissimilarity matrix was generated using a python script in the QIIME1.9.1. CAP analysis based on the Bray-Curtis dissimilarity matrix was done by constraining the treatment as the factor in RStudio. PERMANOVA analysis was performed to determine whether treatment differences were significant, and the p value is shown on the top right corner. Please click here to view a larger version of this figure.
Figure 6: Analysis using plant species as constraining factor between all sample types. Analysis was conducted to determine whether there were differences in the microbial community composition between plant species in all sample types. Principal coordinates ordination and CAP analysis of all sample types (endosphere, rhizosphere, and soil) were done using a Bray-Curtis dissimilarity matrix. The Bray-Curtis dissimilarity matrix was generated using the Python script in QIIME1.9.1. CAP analysis based on the Bray-Curtis dissimilarity matrix was done by constraining the plant species as the factor in RStudio. PERMANOVA statistical analysis was performed to determine the significance between plant species, and the P value is shown on the top right corner. Each symbol in the figures represents the entire microbial community for that sample. n = 18 for each species in all sample types except n = 15 for the sideoats grama mix. Please click here to view a larger version of this figure.
Figure 7: Example of CAP analysis using species as constraining factor for each sample type individually. Principal coordinate ordination and CAP analysis of each sample type (endosphere, rhizosphere, and soil) using Bray-Curtis dissimilarity matrix. Each sample type was rarefied to 486, 17154, and 8231 reads per sample respectively in endosphere, rhizosphere and soil. Species was used as the factor to constrain the ordination. PERMANOVA statistical analysis was performed to determine the significance between plant species in each sample type, and the p value is shown on the top right corner. Each symbol in the figure represents the entire microbial community for each sample. Sample size is n = 29 for each sample type, n = 6 for each plant species in each sample type except for the sideoats grama mix (n = 5). Please click here to view a larger version of this figure.
The methods described in this manuscript should enable scientists to easily enter the field of soil and plant metagenomics. Over the years, we have refined our methods since conducting the experiment described in this manuscript. One change is that we now pre-label tubes before going out to the field to sample. Our lab uses a barcoding system and a label printer. The label printer not only saves time when labeling tubes, but also makes everything easier to track and to correctly identify samples without the vagaries of human hand writing. Another critical point is that we try to process the material after bringing it back from the field as soon as possible. We aim to freeze the soil used for DNA analysis, sterilize and freeze the roots, and filter and freeze the rhizosphere within 12 to 36 hours after returning from the field. The DNA extraction procedures are lengthy with many steps, particularly for soil and rhizosphere, so we purchased a robot (Kingfisher Flex, ThermoFisher) that minimizes the hands on time for the DNA extraction protocols, reduces human error that may be introduced, and improves the consistency in the way different batches of soil, roots, or rhizosphere are processed. When working with plant material it is important to decide on the root type to be studied or to take a variety of root types to get a "representative sample". Maintaining roots and leaves in a frozen state when conducting the DNA extractions is important, as is ensuring there is no cross-contamination between samples when filling 96-well DNA extraction plates. Another important factor to consider is the number of replicates to be used when designing field experiments and using a complete randomized design where possible26. Due to high field variability it may be necessary to have a large number of replicates to detect small differences. Finally, from our experience it is essential to make sure soils are not too wet when excavating the roots. If the soils are saturated with water it is not only messy to work with, but it is also very difficult to define the rhizosphere and to remove the soil from the roots.
One modification that was made early on during the development of these methods was instead of shaking the tubes by hand to release the rhizosphere we upgraded to vortexers powered by a gas generator to make the work easier in the field and more standardized in terms of the time and manner that each tube was agitated. One limitation of the amplicon sequencing approach is that the taxonomic resolution of the results is often limited and many OTUs are unknown or only known at the family or genus level. This field of research is rapidly evolving so it is important to be aware of new and developing approaches, particularly for data analysis that may enhance the resolution of the results.
These protocols are only for studying bacteria and archaea, not fungi. The use of different primers for amplification will allow for the study of fungal communities using the same DNA samples27,28. These methods do not require the purchase of large amounts of equipment because the methods can be simplified. The methods we describe here are mainly for determining "who is there", but the field is quickly evolving into asking important questions about function, which may be addressed by using shotgun sequencing methods, isolation and testing the functionality of microbes, or sequencing whole microbial genomes.
The representative results highlight the differences in microbial communities that may be identified using the methods described. Using a beta-diversity approach to the data analysis22, compositional differences were shown between sample types. These difference have been clearly observed in most other studies where endosphere, rhizosphere, and soil contain unique microbial communities3. The Shannon diversity index was calculated to determine the abundance and evenness of the microbial species present within each plant species in the endosphere, rhizosphere, and soil. As shown in this study and in many others, alpha diversity is highest in the soil, decreasing slightly in the rhizosphere and then decreasing significantly in the endosphere3,5,29. These results indicate that the methods described here are suitable for identifying compositional changes in the endosphere, rhizosphere, and soil.
The dominance of the Proteobacteria is a common finding in studies on endosphere and soil30,31,32. Endosphere generally has a lower diversity of microbial species with a higher relative abundance of the Proteobacteria. This again highlights that the results here are representative of other findings in the literature. The treatment effects in this study were not significantly different and two major reasons for that may be that the differences imposed by the treatments were not large enough to generate sufficient variation to detect and that this sampling was done at the end of the growing season, when the fields may have had sufficient time to draw down the nitrogen to similar levels, which is what was measured at the end of the season. In another study using similar fertilization rates over a longer period of time, only relatively small changes in the composition of the microbiome were measured33. Other studies have shown changes in both fungal and bacterial communities due to nitrogen fertilizer34,35.
Plant species are known to play roles in determining their microbiomes3,32,36 and even small differences in microbial community variation have been demonstrated between different plant genotypes within a single species37. In this study, a significant difference in microbial community composition was found between plant species. In all the sample types it appeared that switchgrass had the most distinct microbial composition, but differences between species were only statistically significant in the endosphere. Rhizosphere community composition may have become significant if more replicates were available for analysis.
The combined field, lab, and analytical protocols described here provide a powerful method for studying how different factors influence the composition of microbial communities in soils, rhizosphere, and the endosphere of roots36. There is a great deal of work to be done in the area of studying microbiomes, particularly in agricultural fields. Important questions about how yields are altered by the soil microbiome have yet to be fully elucidated. Even the most basic questions regarding how crop rotations influence the soil microbiome, how timing alters the microbiome, how abiotic stress alters the microbiome, how soil type interacts with these factors to alter the microbiome, and whether there are universal microbes in certain crops or regions of the USA are all open questions. These methods will also be useful for epidemiological studies to identify the presence and persistence of pathogenic and beneficial bacteria. Another future horizon for these methods will be to start integrating the DNA methods described here with plant and microbe RNA and metabolite data. Additional improvement and testing of more variables will be important for further optimization of these protocols.
The authors have nothing to disclose.
The development of this manuscript is supported by the National Science Foundation EPSCoR Center for Root and Rhizobiome Innovation Award OIA-1557417. The data collection was supported by funds from University of Nebraska-Lincoln, Agricultural Research and Development and by a Hatch Grant from USDA. We also acknowledge support from the USDA-ARS and support was provided by the Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30411 from the USDA National Institute of Food and Agriculture to establish and manage these fields.
Dneasy PowerSoil HTP 96 Kit | Qiagen/MoBio | 12955-4 | Extraction kit for soil and rhizosphere |
Dneasy PowerPlant HTP 96 Kit | Qiagen/MoBio | 13496-4 | Extraction kit for roots |
D-Handle Digging shovel, 101 cm L | Fiskars | 9669 | |
Rapid Tiller, 40 cm L | Truper | 34316 | |
Ziploc Bags, 17.7 cm x 19.5 cm | Ziploc | NA | |
Cooler | Any | NA | |
Wash pan | Any | NA | |
Plastic bucket | Any | NA | |
Gloves (work and lab) | Any | NA | |
20 cm diameter Soil sieve #8, 2360 μm mesh size | Dual Manufacturing Co., Chicago IL | US8-8FS | |
20 cm diameter Soil Sieve #4, 4750 μm mesh size | Dual Manufacturing Co., Chicago IL | US8-4FS | |
portable generator | Honda brand works well | NA | |
Sterile cell strainers 100 μm mesh size | Fisher Scientific | 22-363-549 | |
NaH2PO4·H2O | VWR | 0823 | |
Na2HPO4 | VWR | 0404 | |
Silwet L-77 | Lehman Seeds | VIS-30 | Surfactant |
Autoclaves | Any | NA | |
Drying Oven | Any | NA | |
Scale | Any | Any | |
Bleach | CLOROX – household strength | NA | |
Tween 20 | Any | NA | |
Liquid Nitrogen | Any | NA | |
Dry Ice pellets | Any | NA | |
Ethanol | Any | NA | |
11 cm precision fine point tweezers | Fisher | 17456209 | |
18 cm Straight point specimen forceps | VWR | 82027-436 | |
13.5 cm Pruning Scissors | Fiskars | 9921 | |
2 mL tube | Any | NA | |
15 mL PP conical tube | MIDSCI | C15B | |
50 mL PP conical tube | MIDSCI | C50B | |
Ultrapure water | Millipore-sigma | Milli-Q Integral, Q-POD | |
Qubit 2.0 fluorometer | Invitrogen | Q32866 | |
Qubit dsDNA HS Assay Kit | Invitrogen | Q32854 | For DNA quantification of removed samples |
QuantiFluor dsDNA System | Promega | E2670 | For DNA quantification |
96-Well Black with Clear Flat Bottom Plates | Corning | 3631 | |
pPNA PCR Blocker | PNA Bio | PP01-50 | |
mPNA PCR Blocker | PNA Bio | MP01-50 | |
Genomic DNA from Microbial Mock Community B (Even Low Concentration) v5.1L, for 16s rRNA Gene sequencing | BEI Resources | HM782D | |
Adhesive 8 well-strips for plates | VWR | 89134-434 | |
Stainless steel beads, 3.2 mm dia | Next Advance | SSB32 | |
1 ml Assay block (DNA extraction plate for the Qiagen/MoBio Dneasy PowerPlant HTP Kit) | CoStar | 3959 | |
antistatic PP weighing funnel, size small for soil/rhizosphere | TWD Tradewinds, INC | ASWF1SPK | |
antistatic PP weighing funnel, size x-small for root/leaf | TWD Tradewinds, INC | ASWFXSCS | |
Genie 2 Digital Vortex | Scientific Industries | SI-0236 | |
Vortex adapter for 50 mL tubes | Scientific Industries | SI-H506 | |
Mortar (100 mL) and pestle | Any | NA | |
Metal micro-spatula | VWR | 80071-672 | |
Disposable antistatic microspatulas | VWR | 231-0106 | |
Brown Paper bag 2# (10.95 cm x 6.19 cm x 20 cm) | Duro | 18402 | |
5424 Centrifuge for 2 mL tube | Eppendorf | 22620461 | |
Centrifuge for 96-well plate | Sigma4-16S | 81510 | |
Centrifuge rotor for 50 mL tubes | Sigma4-16S | 12269 – Biosafe | |
KAPA HiFi DNA polymerase | Kapa Biosystems |