Summary

Visualization of Cellular Electrical Activity in Zebrafish Early Embryos and Tumors

Published: April 25, 2018
doi:

Summary

Here, we show the process of creating a cellular electric voltage reporter zebrafish line to visualize embryonic development, movement, and fish tumor cells in vivo.

Abstract

Bioelectricity, endogenous electrical signaling mediated by ion channels and pumps located on the cell membrane, plays important roles in signaling processes of excitable neuronal and muscular cells and many other biological processes, such as embryonic developmental patterning. However, there is a need for in vivo electrical activity monitoring in vertebrate embryogenesis. The advances of genetically encoded fluorescent voltage indicators (GEVIs) have made it possible to provide a solution for this challenge. Here, we describe how to create a transgenic voltage indicator zebrafish using the established voltage indicator, ASAP1 (Accelerated Sensor of Action Potentials 1), as an example. The Tol2 kit and a ubiquitous zebrafish promoter, ubi, were chosen in this study. We also explain the processes of Gateway site-specific cloning, Tol2 transposon-based zebrafish transgenesis, and the imaging process for early-stage fish embryos and fish tumors using regular epifluorescent microscopes. Using this fish line, we found that there are cellular electric voltage changes during zebrafish embryogenesis, and fish larval movement. Furthermore, it was observed that in a few zebrafish malignant peripheral nerve sheath tumors, the tumor cells were generally polarized compared to the surrounding normal tissues.

Introduction

Bioelectricity refers to endogenous electrical signaling mediated by ion channels and pumps located on the cell membrane1. Ionic exchanges across the cellular membrane, and the coupled electrical potential and current changes, are essential for signaling processes of excitable neuronal and muscular cells. In addition, bioelectricity and ion gradients have a variety of other important biological functions including energy storage, biosynthesis, and metabolite transportation. Bioelectrical signaling was also discovered as a regulator of embryonic pattern formation, such as body axes, the cell cycle, and cell differentiation1. Thus, it is critical for understanding many human congenital diseases that result from the mis-regulation of this type of signaling. Although patch clamp has been widely used for recording single cells, it is still far from ideal for the simultaneous monitoring of multiple cells during embryonic development in vivo. Furthermore, voltage sensitive small molecules are also not ideal for in vivo applications due to their specificities, sensitivities, and toxicities.

The creation of a variety of genetically encoded fluorescent voltage indicators (GEVIs) offers a new mechanism to overcome this issue, and allows for easy application to study embryonic development, even though they were originally intended for monitoring neural cells2,3. One of the currently available GEVIs is the Accelerated Sensor of Action Potentials 1 (ASAP1)4. It is composed of an extracellular loop of a voltage-sensing domain of voltage sensitive phosphatase and a circularly permuted green fluorescent protein. Therefore, ASAP1 allows visualization of cellular electric potential changes (polarization: bright green; depolarization: dark green). ASAP1 has 2 ms on-and-off kinetics, and can track subthreshold potential change4. Thus, this genetic tool allows for a new level of efficacy in real-time bioelectric monitoring in live cells. Further understanding of the roles of bioelectricity in embryonic development and many human diseases, such as cancer, will shed new light on the underlying mechanisms, which is critical for disease treatment and prevention.

Zebrafish have been proven a powerful animal model to study developmental biology and human diseases including cancer5,6. They share 70% orthologous genes with humans, and they have similar vertebrate biology7. Zebrafish provide relatively easy care, a large clutch size of eggs, tractable genetics, easy transgenesis, and transparent external embryonic development, which make them a superior system for in vivo imaging5,6. With a large source of mutant fish lines already present and a fully sequenced genome, zebrafish will provide a relatively unlimited range of scientific discovery.

To investigate the in vivo real-time electrical activity of cells, we take advantage of the zebrafish model system and ASAP1. In this paper, we describe how to incorporate the fluorescent voltage biosensor ASAP1 into the zebrafish genome using Tol2 transposon transgenesis, and visualize cellular electrical activity during embryonic development, fish larval movement, and in live tumor.

Protocol

The zebrafish are housed in an AAALAC-approved animal facility, and all experiments were carried out according to the protocols approved by the Purdue Animal Care and Use Committee (PACUC). 1. Tol2 Transposon Plasmid Construct Preparation NOTE: Tol2, a transposon that was discovered in medaka fish, has widely been used in the zebrafish research community8,9. It has been successfully adopted to the Gateway site…

Representative Results

In a successful injection, more than 50% injected fish embryos will display some degree of green fluorescence in the somatic cells, and most of them will be positive by Tol2 transposon excise assay (Figure 2). After 2-4 generations of out-cross with wildtype fish (until the fluorescent fish reach 50%, the expected Mendelian ratio), the transgenic fish were used for the imaging experiment to track cell membrane potentials during embryonic development. Fir…

Discussion

Although the cellular and tissue level electrical activities during embryonic development and human disease were discovered a long time ago, the in vivo dynamic electrical changes and their biological roles still remain largely unknown. One of the major challenges is to visualize and quantify the electrical changes. Patch clamp technology is a break-through for tracking single cells, but its application to vertebrate embryos is limited because they are composed of many cells. The current chemical voltage dyes ar…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The research work reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under the Award Number R35GM124913, Purdue University PI4D incentive program, and PVM Internal Competitive Basic Research Funds Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agents. We thank Koichi Kawakami for the Tol2 construct, Michael Lin for the ASAP1 construct, and Leonard Zon for the ubi promoter construct through Addgene.

Materials

14mL cell culture tubes VWR 60818-725 E.Coli culture
Agarose electrophoresis tank Thermo Scientific Owl B2 DNA eletrophoresis
Agarose RA Amresco N605-500G For making the injection gels
Attb1-ASAP1-F primer IDT DNA GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGGAGACGACTGTGAGGTATGAACA ASAP1 coding region amplification for subcloning
Attb2-ASAP1-R primer IDT DNA GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAGGTTACCACTTCAAGTTGTTTCTTCTGTGAAGCCA ASAP1 coding region amplification for subcloning
Bright field dissection scope Nikon SMZ 745 Dechorionation, microinjection, mounting
Color camera Zeiss AxioCam MRc Fish embryo image recording
Concave slide VWR 48336-001 For holding fish embryos during imaging process
Disposable transfer pipette 3.4 ml Thermo Scientific 13-711-9AM Fish embryos and water transfer
Endonuclease enzyme, Not I NEB R0189L For linearizing plasmid DNA
Epifuorescent compound scope Zeiss Axio Imager.A2 Fish embryo imaging
Epifuorescent stereo dissection scope Zeiss Stereo Discovery.V12 Fish embryo imaging
Fluorescent light source Lumen dynamics X-cite seris 120 Light source for fluorescence microscopes
Forceps #5 WPI 500342 Dechorionation and needle breaking
Gateway BP Clonase II Enzyme mix Thermo Scientific 11789020 Gateway BP recombination cloning
Gateway LR Clonase II Plus enzyme Thermo Scientific 12538120 Gateway LR recombination cloning
Gel DNA Recovery Kit Zymo Research D4002 DNA gel purification
Loading tip Eppendorf 930001007 For loading injection solution into capilary needles
Methylcellulose (1600cPs) Alfa Aesar 43146 Fish embryo mounting
Methylene blue Sigma-Aldrich M9140 Suppresses fungal outbreaks in Petri dishes
Microinjection mold Adaptive Science Tools TU-1 To prepare agaorse mold tray for holding fish embryos during injection
Microinjector WPI Pneumatic Picopump PV820 Microinjection injector
Micro-manipulator WPI Microinjector mm33 rechts Microinjection operation
Micropipette puller Sutter instrument P-1000 For preparing capillary needle
Mineral oil Amresco J217-500ml For calibrating injection volume
mMESSAGE mMACHINE SP6 Transcription Kit Thermo Scientific AM1340 mRNA in vitro transcription
Monocolor camera Zeiss AxioCam MRm Fish embryo image recording
Plasmid Miniprep Kit Zymo Research D4020 Prepare small amount of plasmid DNA
Plastic Petri dishes VWR 25384-088 For holding fish or fish embryos during imaging process
RNA Clean & Concentrator-5 Zymo Research R1015 mRNA cleaning after in vitro transcription
Spectrophotometer Thermo Scientific NanoDrop 2000 For measuring DNA and RNA concentrations
Stage Micrometer Am Scope MR100 Microinjection volume calibration
Thermocycler Bio-Rad T100 DNA amplification for gene cloning
Thin wall glass capillaries WPI TW100F-4 Raw glass for making cappilary needle
Tol2-exL1 primer IDT DNA GCACAACACCAGAAATGCCCTC Tol2 excise assay
Tol2-exR primer IDT DNA ACCCTCACTAAAGGGAACAAAAG Tol2 excise assay
TOP10 Chemically Competent E. coli Thermo Scientific C404006 Used for transformation during gene cloning
Tricaine mesylate Sigma-Aldrich A5040 For anesthetizing fish or fish embryos
UV trans-illuminator 302nm UVP M-20V DNA visualization
Water bath Thermo Scientific 2853 For transformation process of gene cloning

References

  1. Levin, M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Molecular Biology of the Cell. 25 (24), 3835-3850 (2014).
  2. Storace, D., et al. Toward Better Genetically Encoded Sensors of Membrane Potential. Trends in Neuroscience. 39 (5), 277-289 (2016).
  3. Inagaki, S., Nagai, T. Current progress in genetically encoded voltage indicators for neural activity recording. Current Opinion in Chemical Biology. 33, 95-100 (2016).
  4. St-Pierre, F., et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nature Neuroscience. 17 (6), 884-889 (2014).
  5. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics. 8 (5), 353-367 (2007).
  6. Santoriello, C., Zon, L. I. Hooked! Modeling human disease in zebrafish. Journal of Clinical Investigation. 122 (7), 2337-2343 (2012).
  7. Howe, K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. , (2013).
  8. Kawakami, K., Shima, A., Kawakami, N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proceedings of the National Academy of Science USA. 97 (21), 11403-11408 (2000).
  9. Urasaki, A., Asakawa, K., Kawakami, K. Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proceedings of the National Academy of Science USA. 105 (50), 19827-19832 (2008).
  10. Kwan, K. M., et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Developmental Dynamics. 236 (11), 3088-3099 (2007).
  11. Mosimann, C., et al. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development. 138 (1), 169-177 (2011).
  12. Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments. (63), e3998 (2012).
  13. Ordovas, J. M. Separation of small-size DNA fragments using agarose gel electrophoresis. Methods in Molecular Biology. 110, 35-42 (1998).
  14. Downey, N. Extraction of DNA from agarose gels. Methods Mol Biol. 235, 137-139 (2003).
  15. Desjardins, P., Conklin, D. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments. 45 (45), (2010).
  16. Green, M. R., Sambrook, J. . Molecular cloning : a laboratory manual. , (2012).
  17. Zhang, S., Cahalan, M. D. Purifying plasmid DNA from bacterial colonies using the QIAGEN Miniprep Kit. Journal of Visualized Experiments. (6), 247 (2007).
  18. Meeker, N. D., Hutchinson, S. A., Ho, L., Trede, N. S. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques. 43 (5), (2007).
  19. Kawakami, K., Koga, A., Hori, H., Shima, A. Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene. 225 (1-2), 17-22 (1998).
  20. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). , (2000).
  21. Amsterdam, A., et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biology. 2 (5), E139 (2004).
  22. Lai, K., et al. Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Developmental Dynamics. 238 (1), 76-85 (2009).
  23. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics. 203 (3), 253-310 (1995).
  24. Zhang, G., et al. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery. PLoS Genetics. 9 (8), e1003734 (2013).
  25. Zhang, G., et al. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proceedings of the National Academy of Science USA. 107 (39), 16940-16945 (2010).
  26. Urrego, D., Tomczak, A. P., Zahed, F., Stuhmer, W., Pardo, L. A. Potassium channels in cell cycle and cell proliferation. Philosophical Transactions of the Royal Society of London Series B. 369 (1638), 20130094 (2014).
  27. Yang, H. H., et al. Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo. Cell. 166 (1), 245-257 (2016).
  28. Chamberland, S., et al. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife. 6, (2017).
  29. Hochbaum, D. R., et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods. 11 (8), 825-833 (2014).
  30. Sugiyama, M., et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proceedings of the National Academy of Science USA. 106 (49), 20812-20817 (2009).

Play Video

Cite This Article
Silic, M. R., Zhang, G. Visualization of Cellular Electrical Activity in Zebrafish Early Embryos and Tumors. J. Vis. Exp. (134), e57330, doi:10.3791/57330 (2018).

View Video