Summary

一种体内评价大鼠缺血性中风模型中血脑屏障的破坏

Published: March 11, 2018
doi:

Summary

本程序的总体目标是为在体内评估缺血性中风模型大鼠血脑屏障中断提供一种高度可重复的技术。

Abstract

缺血性中风导致血管源性脑水肿和随后的原发性脑损伤, 这是通过破坏血脑屏障 (BBB) 介导的。建立了诱导缺血性中风大鼠, 并作为体内模型对脑屏障功能完整性进行了研究。分光光度法检测脑标本中的埃文斯蓝 (EB), 可以为新的治疗方式的研究和开发提供可靠的依据。这种方法产生可重现的结果, 并适用于任何实验室, 不需要特殊设备。在此, 我们提出了一个可视化的技术指南, 以检测的 EB 渗出后, 诱导的缺血性中风的大鼠。

Introduction

血管源性脑水肿由于血脑屏障 (BBB) 中断仍然是缺血性中风的重要并发症, 也是中风患者存活率的主要决定因素1, 2.血脑屏障 (BBB) 由脑毛细血管内皮细胞 (BCECs) 形成, 由不同的神经血管成分组成 (例如, BCECs、毛细血管、星形胶质和神经细胞之间的紧密连接3), 提供了一种中枢神经系统 (CNS) 与外周血循环之间的专门和动态接口4,5。诸如缺血再灌注损伤等侮辱可能扰乱脑屏障功能完整性, 导致循环白细胞随后渗入大脑实质, 最终引发脑部炎症和原发性脑损伤。6,7. 需要动物模型来精确检测中风发生后的脑屏障功能障碍。这些模型对于研究潜在的病理生理学机制和引入新的神经保护策略具有重要意义。体外基于细胞培养的脑屏障模型已得到高度发展, 并用于生理病理的分子研究(bbb) 8, 9, 10.然而, 在这方面,在体内动物模型, 它产生的脑屏障的缺血性损伤类似于人类的临床条件, 也是非常值得的。定量检测埃文斯蓝 (EB) 的渗出是一种公认和敏感的技术, 已用于评估脑屏障完整性和功能的神经退行性疾病, 包括缺血性中风11,12,13,14. 该方法成本效益高, 可行, 重现性好, 完全适用于任何实验实验室。它的实现不需要先进的设备, 如放射性示踪剂15或磁共振成像 (MRI)16, 这是其他方法的先决条件。本文对缺血性脑卒中大鼠模型中 EB 渗出进行了脑屏障的基本技术过程的综合演示。

Protocol

所有的程序都按照阿尔达比勒大学医学研究委员会的指导方针进行动物研究 (道德 ID 号: IR。ARUMS。1394.08). 在这一可视化研究中, 我们使用了由牧场研究所 (伊朗德黑兰) 获得的成年雄性大大鼠 (300-350g)。 1. 麻醉和血流仪 麻醉使用4% 异氟醚, 并保持它与异氟醚 (1-1. 5%) 在一氧化氮 (70% 伏/五) 和氧 (30% v/v) 的混合物在手术期间。 放置一个麻醉动物在一个反馈控制的加?…

Representative Results

右半球 EB 水平与假手术大鼠左半球无显著性差异 (分别为 1.06 0.1 µg/克和 1.1 @ 0.09 µg/克)。如图 2 a-2 b所示, 在缺血性大鼠的左半球, 诱导短暂缺血 (90 分钟缺血/24 小时再灌注) 导致 EB 水平显著差异 (10.41 @ 0.84 µg/g, p < 0.001), 与各自半球在假操作的老鼠。总的来说, 这些发现表明, 在正常情况下, eb 不能轻易地越过脑屏障进入大脑实质和脑缺血性侮辱诱发 EB ?…

Discussion

迄今为止, 各种方法, 如显影和检测放射性示踪剂24,25, 免疫荧光显微镜26,27, EB 渗出技术20, 23已被用来评估血脑屏障损伤。EB 染料强烈能够绑定到血清白蛋白, 并作为追踪器, 以检测血管渗漏和量化的 BBB 击穿11,28,<su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢阿尔达比勒医学大学 (阿尔达比勒, 伊朗) 研究的副校长为财政支持 (授予 No: 9607)。

Materials

Isoflurane Piramal AWN 34041100 20 – 25 °C
2,3,5-Triphenyltetrazolium chloride (TTC) Molekula 31216368 4 years
Sprague–Dawley rats  Pasture Institute (Tehran, Iran) 300-350g
Evans Blue  Sigma-Aldrich  314-13-6
Trichloroacetic acid  Sigma-Aldrich  76-03-9 2 years
Bupivacaine HCl (0.5%) Delpharm Tours below  25 °C
Bupernorphine Exir (Iran)
Sodium Carbonate Sigma-Aldrich  497-19-8
Sodium chloride  Sigma-Aldrich  7647-14-5
Di- Sodium hydrogen phosphate EMD Millipore  231-448-7
Potassium chloride Sigma-Aldrich   7447-40-7
Ethanol  Sigma-Aldrich  64-17-5
silicone(Xantopren) Heraeus EN ISO 4823
Activator universal plus Heraeus 66037445
Micro-Dissecting forceps Stoelting 52100-41
Spring Scisors Stoelting 52130-00
Operating  Scissors Roboz 52140-70
Brain matrix  Stoelting 51390
Anesthesia Machine for Small Animals |  Kent Scientific SS-01
Power Lab system AD Instruments ML880
Laser Doppler flowmeter AD Instruments ML191
Heating feed back system Harvard Appratus 72-7560
Vascular micro clamp FineScience Tools 18055-03
Silk 5-0 suture thread Ethicon 682G
Ethilon 4-0 suture thread  Ethicon EH6740G

References

  1. Jin, G., et al. Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke. 39 (9), 2538-2543 (2008).
  2. Lo, E. H., Dalkara, T., Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 4 (5), 399-415 (2003).
  3. Tam, S. J., Watts, R. J. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci. 33, 379-408 (2010).
  4. Zhang, C., et al. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J Control Release. , (2014).
  5. Obermeier, B., Daneman, R., Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 19 (12), 1584-1596 (2013).
  6. Fang, W., et al. Attenuated Blood-Brain Barrier Dysfunction by XQ-1H Following Ischemic Stroke in Hyperlipidemic Rats. Mol Neurobiol. 52 (1), 162-175 (2015).
  7. Huang, J., et al. CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke. 44 (1), 190-197 (2013).
  8. Omidi, Y., Barar, J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. Bioimpacts. 2 (1), 5-22 (2012).
  9. Cho, H., et al. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep. 5, (2015).
  10. Barar, J., Rafi, M. A., Pourseif, M. M., Omidi, Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts. 6 (4), 225-248 (2016).
  11. Kaya, M., et al. Magnesium sulfate attenuates increased blood-brain barrier permeability during insulin-induced hypoglycemia in rats. Can J Physiol Pharmacol. 79 (9), 793-798 (2001).
  12. Pasban, E., Panahpour, H., Vahdati, A. Early oxygen therapy does not protect the brain from vasogenic edema following acute ischemic stroke in adult male rats. Sci Rep. 7 (1), 3221 (2017).
  13. Haghnejad Azar, A., Oryan, S., Bohlooli, S., Panahpour, H. Alpha-Tocopherol Reduces Brain Edema and Protects Blood-Brain Barrier Integrity following Focal Cerebral Ischemia in Rats. Med Princ Pract. 26 (1), 17-22 (2017).
  14. Belayev, L., Busto, R., Zhao, W., Ginsberg, M. D. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 739 (1-2), 88-96 (1996).
  15. Bodsch, W., Hossmann, K. A. 125I-antibody autoradiography and peptide fragments of albumin in cerebral edema. J Neurochem. 41 (1), 239-243 (1983).
  16. Jiang, Q., et al. Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI. J Cereb Blood FlowMetab. 25 (5), 583-592 (2005).
  17. Uluç, K., Miranpuri, A., Kujoth, G. C., Aktüre, E., Başkaya, M. K. Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J Vis Exp. (48), (2011).
  18. Hungerhuber, E., Zausinger, S., Westermaier, T., Plesnila, N., Schmid-Elsaesser, R. Simultaneous bilateral laser Doppler fluxmetry and electrophysiological recording during middle cerebral artery occlusion in rats. J Neurosci Methods. 154 (1-2), 109-115 (2006).
  19. Panahpour, H., Nouri, M. Post-Ischemic Treatment with candesartan protect from cerebral ischemic/reperfusioninjury in normotensive rats. Int J Pharm Pharm Sci. 4 (4), 286-289 (2012).
  20. Panahpour, H., Dehghani, G. A., Bohlooli, S. Enalapril attenuates ischaemic brain oedema and protects the blood-brain barrier in rats via an anti-oxidant action. Clin Exp Pharmacol Physiol. 41 (3), 220-226 (2014).
  21. Panahpour, H., Nekooeian, A. A., Dehghani, G. A. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats. Iran J Med Sci. 39 (6), 536-542 (2014).
  22. Panahpour, H., Nekooeian, A. A., Dehghani, G. A. Candesartan attenuates ischemic brain edema and protects the blood-brain barrier integrity from ischemia/reperfusion injury in rats. Iran Biomed J. 18 (4), 232-238 (2014).
  23. Kaya, M., et al. The effects of magnesium sulfate on blood-brain barrier disruption caused by intracarotid injection of hyperosmolar mannitol in rats. Life sci. 76 (2), 201-212 (2004).
  24. Schöller, K., et al. Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res. 1142, 237-246 (2007).
  25. Bodsch, W., Hossmann, K. A. 125I-Antibody Autoradiography and Peptide Fragments of Albumin in Cerebral Edema. J Neurochem. 41 (1), 239-243 (1983).
  26. Sandoval, K. E., Witt, K. A. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 32 (2), 200-219 (2008).
  27. Zhu, H., et al. Baicalin reduces the permeability of the blood-brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells. J Ethnopharmacol. 141 (2), 714-720 (2012).
  28. Kucuk, M., et al. Effects of losartan on the blood-brain barrier permeability in long-term nitric oxide blockade-induced hypertensive rats. Life Sci. 71 (8), 937-946 (2002).
  29. Uyama, O., et al. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab. 8 (2), 282-284 (1988).
  30. Kleinig, T. J., Vink, R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol. 22 (3), 294-301 (2009).
  31. Del Zoppo, G. J., Mabuchi, T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 23 (8), 879-894 (2003).
  32. Fluri, F., Schuhmann, M. K., Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 9, 3445-3454 (2015).
  33. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthermia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  34. Shin, H. K., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  35. Bottiger, B. W., et al. Global cerebral ischemia due to cardiocirculatory arrest in mice causes neuronal degeneration and early induction of transcription factor genes in the hippocampus. Brain Res Mol Brain Res. 65 (2), 135-142 (1999).

Play Video

Cite This Article
Panahpour, H., Farhoudi, M., Omidi, Y., Mahmoudi, J. An In Vivo Assessment of Blood-Brain Barrier Disruption in a Rat Model of Ischemic Stroke. J. Vis. Exp. (133), e57156, doi:10.3791/57156 (2018).

View Video