Этот протокол описывает измерение проницаемость эпителия барьер в реальном времени следующие фармакологического лечения человека кишечные organoids с помощью флуоресцентной микроскопии и жить микроскопии клетки.
Достижения в 3D культуры кишечных тканей, полученные через биопсии или генерируется из плюрипотентных стволовых клеток через направленного дифференцирования, привели к модели сложных в vitro слизистой оболочки кишечника. Используя эти новые модели систем потребует адаптации инструментов и методов, разработанных для систем 2D культуры и животных. Здесь мы опишем технику для измерения проницаемость эпителия барьер в человека кишечные organoids в реальном времени. Это достигается путем микроинъекции дневно меченых декстрана и изображений на инвертированным микроскопом с epifluorescent фильтрами. Реальном времени измерения проницаемости барьер в кишечных organoids облегчает поколения с высоким разрешением временных данных в тканях человека кишечного эпителия, хотя этот метод может быть применен также для фиксированной timepoint изображений подходы. Этот протокол является легко могут быть приспособлены для измерения проницаемость эпителия барьер после воздействия фармакологических агентов, бактериальных продуктов или токсинов или живые микроорганизмы. С незначительными изменениями этот протокол также может служить в качестве общего грунт на микроинъекции кишечных organoids и пользователи могут выбрать дополнить этот протокол с дополнительных или альтернативных нисходящие приложения после микроинъекции.
Кишечного эпителия образует избирательный барьер, опосредует направленного транспорта питательных веществ, H2O, ионов, и отходов при сведении к минимуму неспецифических диффузии опосредованной обмен других частиц между просвета и Мезенхимальные ткани или крови поставки1,2. Неспецифические проницаемость кишечного эпителия барьер уже давно считается ключевых функциональных параметров в здоровье и болезни3,4,5,6, которая отражает скорость Диффузия малых молекул через эпителий через параклеточный пространства. Измерения проницаемости эпителиальных барьер может проводиться в животных модели7 и8 человека пациентов через проглатывание лактулоза, который имеет без конкретных транспортер в желудочно-кишечном тракте и последующего сбора и измерение концентраций лактулоза в периферической крови. Альтернативные попадает маркеры барьерной функции такие как дневно обозначенные углеводы являются также доступны9,10. Этот подход был адаптирован для эпителиальных клеток кишечника культур, выращенных на Transwell поддерживает11, упрощенный подход, который позволяет для большего контроля экспериментальный, но также подверглась критике как бедных предсказатель в vivo проницаемость отсутствием дифференцированных эпителиальных подтипы и ткани структура12. С помощью камеры представляют собой еще один подход и позволяют для измерения эпителиальных барьерной функции в целом интестинальную ex vivo13. Применение этого метода часто ограничивается ткани наличия и состояния13,14. Таким образом, необходимы новые методы, которые баланс воспроизводимость и пропускную способность с физиологическое значение.
Недавние события в в vitro органогенеза привели к принятию систем модели 3D культуры ткани как сложные платформы для изложив динамика сложных тканей15,16,17 ,18,19,20,21,22,23. В частности, человеческих плюрипотентных стволовых клеток (hPSC) производные человека кишечные organoids (HIOs)19,24 появились как воспроизводимость и экспериментально шансов справиться с возникающими модель системы для изучения хост микробных взаимодействий и Эпителиальный барьер динамика25,26,27,28. Аналогичным образом человеческие ткани производные organoids (также известный как enteroids) могут быть получены от простой биопсия процедура и может использоваться как шансов справиться с возникающими системы для изучения физиологии человека и болезнь15,29,30. Микроинъекции человека кишечные organoids позволяет для доставки экспериментальных соединений25 или жить микробы25,31,32,33 к апикальной эпителия поверхность органоид люмен. Лесли и Хуан и др. 25 недавно адаптировать эту технику для измерения проницаемости барьер в HIOs, microinjected с флуоресцеин Изотиоцианаты (FITC) помечены декстрана, после воздействия бактериальных токсинов.
Этот протокол предназначен в качестве руководства для измерения проницаемость эпителия барьер в hPSC производные HIOs и HIOs тканей, полученных с помощью флуоресцентной микроскопии. С незначительными изменениями он также может служить общей грунт на микроинъекции HIOs с экспериментальной соединений. Пользователи могут дополнить этот протокол с дополнительных или альтернативных нисходящие приложения после микроинъекции.
Этот Протокол устанавливает общего назначения метод для измерения проницаемость эпителия барьер и микроинъекции hPSC производные HIOs и ткани производные кишечных organoids в режиме реального времени. Мы также продемонстрировали наш подход к анализу и интерпретации данных, получаемых с помощью этих методов. Учитывая растущее принятие кишечных organoids модель систем16,20,,2128 и давний интерес к проницаемость кишечного барьера как физиологически соответствующих функциональных Результат3,4,5,6, мы ожидаем, что другие работающие в этой области будет иметь возможность применять и развивать эти методы.
Есть несколько шагов, которые имеют решающее значение для применения этого метода. Доступ к высоким качеством hPSC – или производных HIO ткани должны создаваться до широких экспериментов с микроинъекции ткани. HIO макроструктура может быть гетерогенных, изменения в размер и форму, хотя личность ткани и клеточной морфологии высоко воспроизводимый при использовании установленной методологии для создания HIOs24. Сферические HIOs, состоящий из одного полупрозрачные люмен и измерения диаметром около 1 мм идеально подходят для микроинъекции и измерения Люминал флуоресценции в режиме реального времени. В некоторых случаях будет не микроинъекции, в результате распада HIO или очевидные утечки введенного материала. Не удалось HIOs могут быть удалены из культуры также по усмотрению пользователя с помощью стандартной микропипеткой. Рассмотрим доступны на платформе тепловизионных объективов при выборе HIOs микроинъекции и изображений. В общем, 2-4 X объективов идеальны для захвата полного HIO флуоресцентные сигнал, хотя 10 X цели может быть использован, если линзы малой мощности не доступны или если имеющиеся HIOs < 1 мм в диаметре. Изображений программное обеспечение необходимо разрешить для автоматического захвата флуоресцентных изображений в определенных точках с течением времени.
Для того, чтобы потребностям экспериментальные возможны несколько модификации настоящего Протокола. Например результаты испытаний барьер функция может быть зависимым от молекулярного размера соединений в использование43 , и это может быть уместно для тестирования препаратов декстран разной молекулярной массы. Кроме того помимо флуоресценции изображений в качестве показателя общей структурной целостности тканей25может выполняться brightfield изображений. При выполнении микроинъекции живых бактерий25,28,,3132,,3344, это может быть необходимо добавить пенициллин и Стрептомицина или гентамицин HIO культуры средств массовой информации до или после микроинъекции. Вне микрокапиллярной будет быть загрязнены во время наполнения с подвеской бактериальной культуры, и это может быть передана СМИ HIO. Поочередно микроинъекции может выполняться на HIOs приостановлено в внеклеточного матрикса (например, Matrigel) без СМИ, добавляя средства массовой информации, после завершения микроинъекции. Это может ограничить загрязнение внеклеточного матрикса и внешний облик HIO. При планировании микробного роста анализов, это может быть необходимо удалить антибиотиков в СМИ после 1-2 h, чтобы избежать замедления или предотвращения роста microinjected организмов.
Наконец признавая, что не все исследователи будут иметь доступ к оборудованию микроскопии, подходит для изображений в vitro , важно отметить, что процедуры, изложенные в настоящем Протоколе, для сбора данных флуоресценции могут применяться для получения изображений в фиксированной timepoints с помощью стандартных epifluorescent микроскопии без автоматизированного образов или экологического контроля. Примеры этого подхода можно найти в докладах, Лесли и Хуан и др. 25, обследовавший C. difficile токсин деятельности в hPSC производные кишечных organoids и Karve и Pradan et al. 44, обследовавший проницаемость эпителия барьер в подобных hPSC производные кишечных organoids microinjected с живой E. coli. Руководство по эксплуатации рентгенографическое оборудование может привести к большей вариации и трудности в деле нормализации флуоресцентного сигнала. При выполнении ручной изображений FITC-декстрана вводят HIOs важно поддерживать фиксированный масштаб, флуоресцентный возбуждения интенсивности и длительности выдержки на протяжении эксперимента, чтобы избежать искажения измерений интенсивности флуоресценции.
The authors have nothing to disclose.
Авторы хотели бы поблагодарить Drs. Stephanie Спон и Базель Abuaita для многих полезных обсуждений по органоид микроинъекции. JRS поддерживается консорциумом кишечных стволовых клеток (U01DK103141), совместный исследовательский проект, финансируемый национального института диабета и пищеварительной и заболеваний почек (NIDDK) и национального института аллергии и инфекционных заболеваний (NIAID). JRS и VBY поддерживаются NIAID роман, альтернативные модели систем для кишечных заболеваний (NAMSED) консорциума (U19AI116482). DRH поддерживается механизмов микробного патогенез обучения грант от национального института аллергии и инфекционных заболеваний (NIAID, T32AI007528) и клинические и поступательного науки награду Мичиган института клинической и здравоохранения Исследований (UL1TR000433).
Полные данные файлы и код анализа данных, используемые в этой рукописи доступны на https://github.com/hilldr/HIO_microinjection.
EGTA 0.5 M sterile (pH 8.0) | Bioworld | 405200081 | |
Cell matrix solution (Matrigel) | Corning | 354230 | |
Deltavision RT live cell imaging system | GE Life Sciences | 29065728 | http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/en/GELifeSciences/brands/deltavision/ |
Camera | GE Life Sciences | 29065728 | Included with Deltavision system |
softWoRx Imaging software | GE Life Sciences | 29065728 | Included with Deltavision system |
Biosafety cabinet | Labconco | Cell Logic+ | http://www.labconco.com/product/purifier-cell-logic-class-ii-type-a2-biosafety-cabinets-2/4262 |
1X PBS | Life Technologies | 10010-023 | |
Advanced DMEM-F12 | Life Technologies | 12634-010 | Component of ENR media; see McCraken et al. 24 |
B27 supplement (50X) | Life Technologies | 17504044 | Component of ENR media; see McCraken et al. 24 |
L-glutamine (100X) | Life Technologies | 25030-081 | Component of ENR media; see McCraken et al. 24 |
HEPES buffer | Life Technologies | 15630080 | Component of ENR media; see McCraken et al. 24 |
Manipulator | Narshge | UM-3C | |
Micromanipulator | Narshge | UM-1PF | |
Pipette Holder | Narshge | UP-1 | Alternate to Xenoworks pipette holder |
Magnetic stand | Narshge | GJ-1 | |
Dissecting scope | Olympus | SX61 | Recommended scope, although other models are likely compatible |
Olympus IX71 Fluorescent microscope | Olympus | IX71 | Included with Deltavision system |
CoolSNAP HQ2 | Photometrics | 29065728 | Included with Deltavision system |
Recombinant C. difficile Toxin A/TcdA Protein | R&D Systems | 8619-GT-020 | |
EGF | R&D Systems | 236-EG | Component of ENR media; see McCraken et al. 24 |
R-spondin 1 | R&D Systems | 4645-RS | Component of ENR media; see McCraken et al. 24 |
Noggin | R&D Systems | 6057-NG | Component of ENR media; see McCraken et al. 24 |
Mineral oil | Sigma-Aldrich | M8410 | |
FITC-dextran (4 kDa) | Sigma-Aldrich | 46944 | |
Micropipette puller | Sutter Instruments | P-30 | |
Nunc Lab-Tek II Chamber Slides | ThermoFisher Scientific | 154526PK | |
Glass filaments | WPI | TW100F-4 | |
Micropipette holder | Xenoworks | BR-MH2 | Preferred device |
Analog Tubing kit | Xenoworks | BR-AT | |
1/16 in clear ferrule | Xenoworks | V001104 | |
1-1.2 mm O-ring | Xenoworks | V300450 |