Cell-autonomous functions of genes in the brain can be studied by inducing loss or gain of function in sparse populations of cells. Here, we describe in utero electroporation to deliver Cre recombinase into sparse populations of developing cortical neurons with floxed genes to cause loss of function in vivo.
Cell-autonomous neuronal functions of genes can be revealed by causing loss or gain of function of a gene in a small and sparse population of neurons. To do so requires generating a mosaic in which neurons with loss or gain of function of a gene are surrounded by genetically unperturbed tissue. Here, we combine the Cre-lox recombination system with in utero electroporation in order to generate mosaic brain tissue that can be used to study the cell-autonomous function of genes in neurons. DNA constructs (available through repositories), coding for a fluorescent label and Cre recombinase, are introduced into developing cortical neurons containing genes flanked with loxP sites in the brains of mouse embryos using in utero electroporation. Additionally, we describe various adaptations to the in utero electroporation method that increase survivability and reproducibility. This method also involves establishing a titer for Cre-mediated recombination in a sparse or dense population of neurons. Histological preparations of labeled brain tissue do not require (but can be adapted to) immunohistochemistry. The constructs used guarantee that fluorescently labeled neurons carry the gene for Cre recombinase. Histological preparations allow morphological analysis of neurons through confocal imaging of dendritic and axonal arbors and dendritic spines. Because loss or gain of function is achieved in sparse mosaic tissue, this method permits the study of cell-autonomous necessity and sufficiency of gene products in vivo.
Generating a genetic mosaic is a classic experimental paradigm for understanding the function of a gene of interest. To determine if a gene is necessary for a cellular phenotype, the simplest approach is causing a loss of function of the gene throughout the organism (e.g. knockout). However, to determine if a gene is required specifically in a certain cell type, knockout of the gene throughout the organism is not a valid approach. Instead, a method is required that will cause the loss of function of a gene in a given cell while it is surrounded by wildtype (i.e. genetically unperturbed) tissue—in other words, creating mosaic tissue. If the mutant cell shows a mutant phenotype, but surrounding wildtype cells do not, the gene functions in a cell-autonomous manner. Analysis of mosaic tissue, in which mutant cells are surrounded by wildtype tissue, is ideal for understanding cell-autonomous functions of genes, especially in the brain where neurons and glia form a vast interconnected network of tissue.
Several forms of mosaic brain tissue have provided powerful models to investigate cell-autonomous functions of genes. Studies focused on neuronal transplantation1, female X-linked mosaicism2,3,4, and endogenous somatic mosaicism5,6 have drawn their conclusions based on mosaic brain tissue. Conditional deletion of a gene through the Cre-lox recombination system is a method that takes full advantage of the great availability of transgenic mouse lines. In this method, two loxP sites are introduced on either side of a required sequence of a gene (such as an exon), leaving it flanked by loxP sites that both face in the same direction ("floxed"). Cre recombinase excises the sequence between the loxP sites7. Cre-mediated recombination can be achieved by crossing floxed mice to another mouse line expressing Cre recombinase along with a fluorescent marker in a subset of cells ("Cre reporter line"). This has been demonstrated in a variety of ways to uncover the functions of a gene in subsets of cells, such as excitatory neurons or astrocytes8. Cre reporter lines can express CreERT2 to allow Cre-mediated recombination to be drug-inducible (single-neuron labeling with inducible Cre-mediated knockout, or SLICK)9. In another strategy called mosaic analysis with double markers (MADM)10,11, Cre-mediated interchromosomal recombination allows a homozygous mutant to be created alongside heterozygous tissue. In these approaches, a new line of mice needs to be produced each time for each candidate gene or cellular subtype that is tested. Alternatively, Cre recombinase can be introduced postnatally through iontophoresis12 or through viral vectors (e.g. adeno-associated viruses13 or lentiviruses14 carrying cellular subtype-specific promoters). This strategy creates strong and postnatal labeling. To target developing cerebral cortical neurons sparsely and prenatally, an ideal strategy is in utero electroporation of Cre recombinase with a fluorescent marker.
In addition to combining Cre-lox recombination through in utero electroporation to produce mosaic tissue in vivo, we introduce several adaptations to procedures from other published protocols15,16,17,18,19,20,21. We provide information to improve success in breeding timed-pregnant females. We also outline our two strategies to introduce sparse and bright labeling of neurons in cortical tissue: One strategy is to titrate the levels of a single construct coding for Cre recombinase and a fluorescent marker22. Another strategy is to use the "Supernova" system, designed specifically with these parameters in mind23,24. Additionally, we offer improvements on producing consistent microinjection pipettes and simplifications to the in utero electroporation surgery. Finally, we outline critical steps in a simplified histological preparation that permits the analysis of dendritic spines and dendritic and axonal arbors, without further staining or immunohistochemistry.
Methods described here have been approved by the Animal Care and Use Committee (ACUC) of James Madison University, and are in accordance and compliance with all relevant regulatory and institutional guidelines.
1. Mouse Set-up
2. DNA set-up
3. Pipette Set-up
4. In Utero Electroporation
5. Histological Preparation for Fluorescence Microscopy
NOTE: This histology protocol is optimized for preparing tissue from animals older than postnatal day (P) 13 that were electroporated in utero. To prepare tissue from younger postnatal animals (P0-P13), it is recommended to follow all steps (including transcardial perfusion), though the brain should be embedded in agar prior to preparing sections (step 5.9). Tissue may even be prepared from embryos within 1-2 days after electroporation, using methods described previously18,20.
The single construct GFP.Cre (see list of materials) was electroporated at E15.5 and visualized at P14. Depending on the concentration of the construct and the volume of injection, a sparse or dense result can be obtained22,26. For example, injection of 1 µL of 2 mg/mL GFP.Cre results in a sparse distribution of labeled cells, some of which can be bright (Figure 1A), and localized in layer II/III (Figure 1B). Because the tissue is 100 µm thick, most of the dendritic arbors are preserved (Figure 1C). Dendritic spines can be observed at high magnifications (60X; Figure 1D). Injection of 1.5 µL at the same concentration results in very dense labeling (Figure 2A) in layer II/III (Figure 2B), which can be sub-optimal as it is difficult to track the source of neurites and dendritic spines (Figure 2C). However, it is still possible to image a neuron (Figure 2D) and its processes (Figure 2E) by selecting a bright cell in the periphery of the labeled area (Figure 2D).
Finally, it is possible to maximize the brightness of neurons while maintaining a sparse distribution of labeled cells. Here, Supernova-GFP (see list of materials) was electroporated at E15.5 and visualized at P23. Note that, based on observations of brain tissue taken at various postnatal ages, there does not appear to be an effect of age on the brightness of any fluorescent constructs used here23,24,26. Injection of 1 µL of a mixture containing 1 mg/mL Sn-GFP (CAG-loxP-stop-loxP-EGFP-ires-tTA-WPRE) and 10 µg/mL TRE-Cre results in a sparse distribution of mostly bright cells (Figure 3A) in layer II/III (Figure 3B). Dendritic and axonal processes (Figure 3B) and dendritic spines (Figure 3C) can be visualized. In our experience, targeting with either a single construct such as GFP.Cre or with "Supernova" constructs will reproducibly yield expression in at least 75% of electroporated embryos.
Figure 1: Sparse and bright expression after in utero electroporation with a single construct containing GFP and Cre recombinase. (A) Low-magnification (4X) fluorescence micrograph of cerebral cortex at P23, after electroporation at E15.5. (B) Medium-magnification (20X) fluorescence micrograph of DAPI nuclear stain, revealing cortical lamination (layers I, II/III, IV, and layers deep to IV). (C) Medium-magnification (20X) fluorescence micrograph of a single neuron. (D) High-magnification (60X) fluorescence micrograph of dendritic spines. Scale bars = 200 µm (A); 100 µm (B,C); and 5 µm (D). Please click here to view a larger version of this figure.
Figure 2: Dense and bright expression after in utero electroporation with a single construct containing GFP and Cre recombinase. (A) Low-magnification (4X) fluorescence micrograph of cerebral cortex at P14, after electroporation at E15.5. (B) Medium-magnification (20X) fluorescence micrograph of DAPI nuclear stain, revealing cortical lamination (layers I, II/III, IV, and layers deep to IV). (C) Medium-magnification (20X) fluorescence micrograph of neurons in the area of densest labeling. (D) Medium-magnification (20X) fluorescence micrograph of neurons taken at the periphery of the area of densest labeling. (E) High-magnification (60X) fluorescence micrograph of dendritic spines. Scale bars = 200 µm (A); 100 µm (B, C, D); and 5 µm (E). Please click here to view a larger version of this figure.
Figure 3: Sparse and bright expression after in utero electroporation with Supernova-GFP constructs containing GFP and Cre recombinase. (A) Low-magnification (4X) fluorescence micrograph of cerebral cortex at P14, after electroporation at E15.5. (B) Medium-magnification (20X) fluorescence micrograph of DAPI nuclear stain, revealing cortical lamination (layers I, II/III, IV, and layers deep to IV). (C) Medium-magnification (20X) fluorescence micrograph of a single neuron. (D) High-magnification (60X) fluorescence micrograph of dendritic spines. Scale bars = 200 µm (A); 100 µm (B,C); and 5 µm (D). Please click here to view a larger version of this figure.
Here, we introduce the combination of in utero electroporation with Cre recombinase in floxed mice to generate mosaic brain tissue. An advantage of this approach is that a new mouse line does not need to be generated each time a different cellular subtype is to be targeted: in utero electroporation can be used to target excitatory neurons, inhibitory neurons, or glia depending on the time and location of electroporation15,16,17,18,19,20,21,34. In our approach, targeting the cerebral cortex is consistent and reproducible because we use 5 mm diameter electroporation electrodes that can be placed over a large area of the developing telencephalon. To target alternative sites in the brain (e.g. diencephalon, retina), or for more specific targeting of regions within the cerebral cortex, procedures and electrodes designed explicitly for this purpose may be used15,16. We also provide a single construct that provides bright labeling and guarantees that every fluorescently-labeled neuron contains Cre recombinase. A disadvantage of using a single construct to achieve bright labeling is that the labeled population can be too dense (Figure 2C), but this can be resolved by imaging cells at the periphery of the labeled area (Figure 2D). Alternatively, expression of a fluorescent construct can be designed to depend on Cre recombinase expression17, but low expression levels may require immunostaining for the fluorescent marker. This limitation is addressed by the "Supernova" system of Cre-dependent fluorescent marker expression (Figure 3A)23,24.
In addition to combining Cre-lox recombination with in utero electroporation, we offer several improvements for optimal breeding of timed-pregnant females. It is important to keep the mice in a holding room that is free from noises and vibrations caused by equipment such as laminar flow hoods. Enrich the environment with plastic igloos, nesting material, and dietary supplements like sunflower seeds (see list of materials). Apart from environmental considerations, we have noticed that the first litter of a female typically has the lowest survival rate. Thus, our protocol suggests waiting until the second pregnancy of the female to perform in utero electroporation. While this strategy increases the survival of the litter, it also tends to increase litter size, which can lengthen surgical time and thus lower the success of the surgery. Therefore, if encountering a particularly large number of embryos (e.g. more than 8), we suggest skipping the electroporation on some of the embryos, especially embryos closest to the ovaries and cervix, where the tissue is most prone to injury. Furthermore, using the same environmental enrichment strategy mentioned above (plastic igloos, nesting material, dietary supplements) tends to increase the survival of litters after birth. It is also important to note that estrus can occur in the female a few hours after parturition of the first litter. In this case, allow the female to give birth to her second litter, then separate after weaning in order to attempt timed mating. When looking for vaginal plugs, it is good practice to separate the female even if a plug is not found, particularly if the female was in estrus the night before. Plugs in certain strains are difficult to spot, and conception may have already occurred.
Another area of improvement is in producing adequate microinjection pipettes for in utero electroporation. Pulling pipettes for DNA injection into lateral ventricles is a critical step. Here, we provide a detailed protocol for setting up pipettes with a consistent tip size and rough tip edge. Other methods include breaking back the tip with a scalpel blade15 or pinching off the tip with forceps16,17. Note that if pipette tips are too small, they will correctly puncture the uterine wall but injection flow rates will be too low, lengthening the time in which the pipette is lodged in the embryonic brain. If pipette tips are too large, they may damage the uterine wall and embryonic brain. If pipette tips are too smooth, they will cause a large divot in the uterine wall and/or embryonic skull before breaking through, possibly damaging the embryo. Practice creating a rough break to produce a 20-25 µm tip and inspect tips under a simple light microscope (e.g. with a 10X objective) until a consistent result is achieved. Testing that liquid can be pipetted at a reasonable rate (e.g. ~0.5 µL/s) with an aspirator tube assembly is another method of ensuring that tip size is within an acceptable range. Because the injection pipettes are calibrated and graduated, the exact amount of DNA delivered to the lateral ventricle is known. This is the most critical step for achieving a desired sparseness reproducibly to an order of magnitude. In other words, a given concentration should yield labeling within a particular range, e.g. 10 to 100 labeled neurons.
The most important step in the protocol is the in utero electroporation procedure. Be extremely gentle while exposing the uterus. When pulling out the last embryos from the abdominal cavity, make sure not to pull on the ovaries or cervix. Using the thumb and forefinger during microinjection and electroporation allows gentle, dexterous manipulation of the embryos to reveal the lateral ventricle and allows the embryos to be pushed gently against the uterine wall. An extremely gentle touch is critical when handling the uterus and embryos. If it is difficult to achieve a gentle touch, use ring forceps with a built-in limit screw to prevent the forceps from clamping down on an embryo or the uterus, causing tissue damage. A further consideration is to administer both the carprofen and buprenorphine immediately before the surgery, a practice that appears to provide effective pain management during in utero surgery without affecting embryonic survival rates35.
In following our simplified histological procedure, several steps are critical. After perfusing experimental brains with fixative, keep the brain intact in the skull to protect the brain tissue from damage during post-fixation. While it is possible to store the brain in 1% PFA for days to weeks, note that fluorescence will decrease as the PFA solution polymerizes. Slicing 100 µm coronal sections is typically thin enough to permit confocal microscopy through the entire section while preserving much of the dendritic and axonal morphology. If fixation occurred properly, brains from animals older than P13 can be mounted onto the vibrating microtome simply with cyanoacrylate glue. However, if the brain is too pliable while being cut by the vibrating microtome, glue down a small agar or agarose block behind the brain to prevent it from bending while it is being sectioned. If the problem is not resolved, embed the brain in agar to form a block to cut with the vibrating microtome, as suggested for younger postnatal brains (step 5.8).
This method combines the Cre-lox recombination system with in utero electroporation in order to generate mosaics that can be used to study the cell-autonomous function of genes in neurons. This method could also be configured to support in utero electroporation of gene editing constructs (e.g. CRISPR/Cas9)6, or other site-specific recombinases (e.g. Flp/FRT or Dre/rox24), which could all be designed to produce mosaic brain tissue. One promising alternative technique that could be used to produce mosaic tissue is viral delivery via intraventricular injection to neonatal mice36. Combined with intraventricular injection at embryonic ages as demonstrated here and elsewhere15,16,17,18,19,20,21,22,37, viral vectors coding for Cre recombinase could be delivered before birth to infect floxed progenitor cells at the ventricular zone. One critical consideration would be to ensure that the viral vectors are diluted sufficiently to achieve sparse excision and labeling. However, this would also result in lower copy numbers of the construct being delivered, including fluorescent markers essential for neuroanatomical observations (e.g. dendritic spines or arborization)24. To counter this pitfall, new constructs using the same strategy as the "Supernova" constructs demonstrated here could be used to achieve sparse labeling without a corresponding decrease in the brightness of labeled cells24. Another critical consideration with viral delivery is to ensure that delivered constructs have promoters specific to the cell population being studied (e.g. excitatory pyramidal neurons). Intraventricular injection of viral vectors causes infection of all tissue surrounding the ventricles, including not only the ventricular zone of the dorsal telencephalon where cortical and hippocampal excitatory neurons are generated, but also the medial and lateral ganglionic eminences where many cortical interneurons are born34. Another feature of in utero electroporation compared to viral delivery of constructs is its relatively narrow time window of delivery. Viruses injected into the lateral ventricles can persist after the surgery, continuing to infect cells lining the ventricular zone. In contrast, electroporation occurs in seconds, targeting a far more specific set of cells. This may be an advantage or disadvantage to the investigator, depending on the subpopulation of cells to be studied.
Our approach supports Cre-lox recombination by introduction of either a single construct or "Supernova" constructs. In the case of the "Supernova" constructs, we urge investigators to become familiar with the advantages and limitations of using this strategy. For example, the timing of Cre deletion has been demonstrated to occur within 2 days in layer II/III excitatory neurons of the cerebral cortex24. Thus, it is plausible that Cre excision could occur over the 48 h following electroporation, rather than immediately following electroporation. Therefore, other forms of corroborating timing and location of Cre excision (e.g. using a Cre reporter mouse line) should be used to complement the use of this new technique, especially in studies where Cre excision within a small timeframe is a critical consideration. Another potential pitfall is that a small percentage of unlabeled cells in a "Supernova" experiment could express Cre recombinase. For example, in Figure 3, we co-electroporated two plasmids: a high concentration of CAG-loxP-stop-loxP-EGFP-ires-tTA-WPRE, and a low concentration of TRE-Cre. Because TRE is a leaky promoter, Cre recombinase could be expressed in cells that received the TRE-Cre plasmid but not the loxP-stop-loxP-EGFP-tTA plasmid, though this would be a rare occurrence. In an experiment where it is essential that all unlabeled cells have no Cre-mediated excision whatsoever, a "Supernova" experiment may need to be supplemented with a control experiment in which Cre recombinase expression outside of labeled neurons is assessed through other means (e.g. Cre recombinase immunohistochemistry).
In summary, our protocol is easily modified to accommodate these new constructs, making in utero electroporation an even more useful and adaptable method for mosaic analysis. Thus, in utero electroporation can be combined with the power of genetic recombination in multiple ways to study mosaic brain tissue in vivo.
The authors have nothing to disclose.
The authors thank the generous support of the James Madison University Department of Biology and the James Madison University Light Microscopy and Imaging Facility. Dr. Mark L. Gabriele for helpful advice regarding young postnatal tissue preparation, and Drs. Justin W. Brown and Corey L. Cleland for generous coordination of surgical materials and space. This research was funded in part by a Collaborative Research Grant by 4-VA, a collaborative partnership for advancing the Commonwealth of Virginia (G.S.V.), and by a Virginia Academy of Science Small Project Research Grant (G.S.V.). Support has been generously provided by a Betty Jo Loving Butler '58 Endowment for Undergraduate Research Scholarship (to K.M.B.), a Farrell Summer Research Scholarship (to K.M.B.), a James Madison University Second Century Scholarship (to K.M.B.), a James Madison University Centennial Scholarship (to C.J.H.), a James Madison University Lucy Robinson Search '30 Memorial Scholarship (to Z.L.H.), and a James Madison University College of Science and Mathematics Faculty Assistance Grant (to G.S.V.).
C57BL/6J mice | The Jackson Laboratory | #000664 | See "1. Mouse set-up" (step 1.1, "wildtype mice") |
GFP.Cre empty vector | AddGene | #20781 | See "2. DNA set-up" (step 2.1 "single DNA construct that codes for Cre recombinase as well as a fluorescent marker"). GFP.Cre empty vector was a gift from Tyler Jacks. |
pK029.CAG-loxP-stop-loxP-RFP-ires-tTA-WPRE (Supernova) | AddGene | #69138 | See "2. DNA set-up" (step 2.1 "Supernova" system) and http://snsupport.webcrow.jp/. pK029.CAG-loxP-stop-loxP-RFP-ires-tTA-WPRE (Supernova) was a gift from Takuji Iwasato. |
pK031.TRE-Cre (Supernova) | AddGene | #69136 | See "2. DNA set-up" (step 2.1 "Supernova" system) and http://snsupport.webcrow.jp/. pK031.TRE-Cre (Supernova) was a gift from Takuji Iwasato. |
pK038.CAG-loxP-stop-loxP-EGFP-ires-tTA-WPRE (Supernova) | AddGene | #85006 | See "2. DNA set-up" (step 2.1 "Supernova" system) and http://snsupport.webcrow.jp/. pK038.CAG-loxP-stop-loxP-EGFP-ires-tTA-WPRE (Supernova) was a gift from Takuji Iwasato. |
EndoFree Plasmid Maxi Kit (10) | Qiagen | #12362 | See "2. DNA set-up" (step 2.3 "endotoxin-free plasmid purification kit") |
Trypan Blue powder, BioReagent grade | Sigma | T6146-5G | See "2. DNA set-up" (step 2.5 "trypan blue") |
Sodium Chloride, ACS, 2.5 kg | VWR | BDH9286-2.5KG | See "2. DNA set-up" (step 2.5 "NaCl") |
Potassium Chloride, ACS, 500 g | VWR | #97061-566 | See "2. DNA set-up" (step 2.5 "KCl") |
Sodium phosphate dibasic, ReagentPlus, 100 g | Sigma-Aldrich | S0876-100G | See "2. DNA set-up" (step 2.5 "Na2HPO4") |
Potassium phosphate monobasic, ReagentPlus, 100 g | Sigma-Aldrich | P5379-100G | See "2. DNA set-up" (step 2.5 "KH2PO4") |
Hydrochloric acid, ACS reagent, 500 mL | Fisher Scientific | A144-500 | See "2. DNA set-up" (step 2.5 "HCl") |
P-97 Micropipette Puller | Sutter Instrument | P-97 | See "3. Pipette set-up" (step 3.1 "glass capillary puller") |
3.0 mm wide trough filament | Sutter Instrument | FT330B | See "3. Pipette set-up" (step 3.1 "glass capillary puller") |
Thin Wall Glass Capillaries, 4", 1 / 0.75 OD/ID | World Precision Instruments | TW100-4 | See "3. Pipette set-up" (step 3.1.1 "glass capillary") |
Single Ply Soft-Tech Wipes, 4.5" | Phenix | LW-8148 | See "3. Pipette set-up" (step 3.2.1 "single-ply task wipe"); other single-ply wipes (e.g. Kimwipes) can be used. |
Graefe Forceps, 7 cm, Straight, 0.7 mm 1×2 Teeth | World Precision Instruments | #14140 | See "4. In utero electroporation" (step 4.1 "Graefe forceps") |
Iris Scissors, 11.5 cm, Straight, 12-pack | World Precision Instruments | #503708-12 | See "4. In utero electroporation" (step 4.1 "iris scissors") |
Hartman Mosquito Forceps, 9 cm, Straight, 12-pack | World Precision Instruments | #503728-12 | See "4. In utero electroporation" (step 4.1 "Hartman mosquito forceps") |
General Purpose Non-Woven Sponges, 2" x 2", 4-ply | Medrepexpress | #2204-c | See "4. In utero electroporation" (step 4.1 "non-woven gauze sponges") |
Ring Tipped Forceps, 10 cm, Straight, 2.2mm ID | World Precision Instruments | #503203 | See "4. In utero electroporation" (step 4.1 "ring-tipped forceps") |
Pyrex petri dishes complete, O.D. × H 100 mm × 20 mm | Sigma-Aldrich | CLS3160102-12EA | See "4. In utero electroporation" (step 4.1 "Petri dishes") |
Flat Type Instrument Tray, Stainless Steel, 13-5/8" x 9-3/4" x 5/8" | Amazon | B007SHGAHA | See "4. In utero electroporation" (step 4.1 "stainless steel tray") |
Platinum Tweezertrode, 5 mm | BTX | #45-0489 | See "4. In utero electroporation" (step 4.3 and 4.16 "tweezer-type electrodes") |
ECM 830 Foot Pedal | BTX | #45-0211 | See "4. In utero electroporation" (step 4.3 and 4.17 "foot pedal") |
ECM 830 Generator | BTX | #45-0052 | See "4. In utero electroporation" (step 4.3 "generator") |
Single Animal Isoflurane Anesthesia System with Small Induction Box | Harvard Apparatus | #72-6468 | See "4. In utero electroporation" (step 4.4 and 4.6 "nose cone", step 4.4 "induction chamber") |
Ophthalmic ointment | Hanna Pharmaceutical Supply Co | #0536108691 | See "4. In utero electroporation" (step 4.7 "veterinary ophthalmic ointment") |
Space Gel (AIMS) | VWR | #95059-640 | See "4. In utero electroporation" (step 4.8 "sealed pouch filled with supersaturated salt solution") |
Hair Remover Gel Cream, Sensitive Formula | Veet | #062200809951 | See "4. In utero electroporation" (step 4.9 "depilatory cream") |
10ul Low Retention Tip Starter (960 tips/pk) | Phenix Research Products | TSP-10LKIT | See "4. In utero electroporation" (step 4.12 "sterile 10 µL micropipette tip") |
Aspirator tube assemblies for calibrated microcapillary pipettes | Sigma-Aldrich | A5177 | See "4. In utero electroporation" (step 4.15 "aspirator tube assembly") |
Braided Absorbable Suture, 4-0, Needle NFS-2(FS-2), 27" | Medrepexpress | MV-J397 | See "4. In utero electroporation" (step 4.19 "absorbable sutures") |
“LiquiVet Rapid” Tissue Adhesive | Medrepexpress | VG3 | See "4. In utero electroporation" (step 4.20 "tissue adhesive") |
Hypodermic syringes, polypropylene, Luer lock tip, capacity 1.0 mL | Sigma-Aldrich | Z551546-100EA | See "4. In utero electroporation" (step 4.21 "1 mL syringe") |
BD Precisionglide syringe needles gauge 26, L 1/2 in. | Sigma-Aldrich | Z192392-100EA | See "4. In utero electroporation" (step 4.21 "26G, ½” needle") |
Nestlets Nesting Material | Ancare | NES3600 | See "4. In utero electroporation" (step 4.24 "nesting materials") |
Sunflower Seeds, Black Oil, Sterile | Bio-Serv | S5137 | See "4. In utero electroporation" (step 4.24 "sunflower seeds") |
Paraformaldehyde, 97% | Alfa Aesar | A11313 | See "5. Histology" (step 5.1.1 "PFA") |
Economy Tweezers #3, 11 cm, 0.2 x 0.4 mm tips | World Precision Instruments | #501976 | See "5. Histology" (step 5.5 "tweezers") |
Agar powder | Alfa Aesar | #10752 | See "5. Histology" (step 5.8.1 "agar") |
Single-edge razor blades, #9 blade | Stanley Tools | #11-515 | See "5. Histology" (step 5.9 "single-edge razor blade") |
Specimen disc S D 50 mm | Leica | #14046327404 | See "5. Histology" (step 5.9 "vibrating microtome specimen disc") |
Buffer tray S assembly | Leica | #1404630132 | See "5. Histology" (step 5.10 "buffer tray") |
VT1000 S Vibratome | Leica | #14047235612 | See "5. Histology" (step 5.10 "vibrating microtome") |
Double Edge Razor Blades | Personna | BP9020 | See "5. Histology" (step 5.10 "blade") |
Knife Holder S | Leica | #14046230131 | See "5. Histology" (step 5.10 "knife holder") |
Studio Elements Golden Taklon Short Handle Round Brush Set | Amazon | B0089KU6XE | See "5. Histology" (step 5.12.1 "fine tipped paintbrush") |
Superfrost Plus Slides | Electron Microscopy Services | #71869-11 | See "5. Histology" (step 5.12.1 "microscope slide") |
ProLong Diamond Antifade Mountant, 10 ml | Thermofisher | P36970 | See "5. Histology" (step 5.12.3-5.12.4 "mountant") |
Cover Glass, 24 x 50 mm, No. 1 | Phenix Research Products | MS1415-10 | See "5. Histology" (step 5.12.4 "coverslip") |
4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) | Sigma-Aldrich | D9542 | See "5. Histology" (step 5.13.1 "DAPI") |
Fixed Stage Upright Microscope | Olympus | BX51WI | See "5. Histology" (step 5.15 "light microscope") |
Laser Scanning Confocal Microscope | Nikon | TE2000/C2si | See "5. Histology" (step 5.15 "confocal microscope") |
4x objective, NA = 0.20 | Nikon | CFI Plan Apo Lambda 4X | See "5. Histology" (step 5.15 "low-power objective") |
20x objective, NA = 0.75 | Nikon | CFI Plan Apo Lambda 20X | See "5. Histology" (step 5.15 "medium-power objective") |
60x objective, NA = 1.40 | Nikon | CFI Plan Apo VC 60X Oil | See "5. Histology" (step 5.15 "high-power objective") |