Qui presentiamo protocolli per omogeneizzazione detergente privo di cellule di mammiferi coltivate basato su azoto cavitazione e successiva separazione delle proteine citosoliche e membrana-limiti di ultracentrifugazione. Questo metodo è ideale per il monitoraggio il partizionamento periferici delle proteine di membrana tra solubili e frazioni della membrana.
Le cellule coltivate sono utili per studiare la distribuzione subcellulare delle proteine, tra cui proteine di membrana periferici. Geneticamente codificato fluorescente proteine etichettate hanno rivoluzionato lo studio della distribuzione subcellulare della proteina. Tuttavia, è difficile quantificare la distribuzione con microscopia di fluorescenza, soprattutto quando le proteine sono parzialmente citosoliche. Inoltre, è spesso importante per lo studio di proteine endogene. Come immunoblots rimangono il gold standard per la quantificazione della distribuzione della proteina dopo frazionamento subcellulare dosaggi biochimici. Anche se ci sono kit commerciali che mirano a isolare citosolico o determinate frazioni di membrana, la maggior parte di questi kit si basano sull’estrazione con detersivi, che potrebbe non essere adatto per lo studio delle proteine di membrana periferici che facilmente vengono estratti dalle membrane. Qui presentiamo un protocollo privo di detergente per cellulare omogeneizzazione di azoto cavitazione e successiva separazione delle proteine citosoliche e di membrana-limitano dall’ultracentrifugazione. Confermiamo la separazione degli organelli subcellulari in solubile e frazioni di pellet attraverso diversi tipi di cellule e confrontare l’estrazione di proteine tra diversi metodi di omogeneizzazione meccanica non basati su detergente comune. Tra i numerosi vantaggi di azoto cavitazione è l’efficienza superiore di rottura cellulare con minimo danno fisico e chimico di organelli delicati. Combinato con ultracentrifugazione, azoto la cavitazione è un metodo eccellente per esaminare lo spostamento delle proteine di membrana periferici tra citosolico e frazioni della membrana.
Proteine cellulari possono essere suddivisi in due classi: quelli che sono associati con membrane e quelli che non sono. Proteine associate non-membrana si trovano nel citosol, nucleoplasma e lumina degli organelli come il reticolo endoplasmico (ER). Ci sono due classi di proteine di membrana-collegato, integrale e periferici. Proteine integrali di membrana sono noti anche come proteine transmembrana, poiché uno o più segmenti della catena del polipeptide si estende la membrana, in genere come un α-elica composta da amminoacidi idrofobici. Proteine transmembrana co-translationally vengono inseriti nelle membrane nel corso della loro biosintesi e rimangono così configurate fino a quando essi sono catabolizzate. Proteine di membrana periferico secondariamente sono spinti a membrane, solitamente come conseguenza di modificazione post-traduzionale con molecole idrofobe quali i lipidi. A differenza di proteine integrali di membrana, l’associazione di proteine di membrana periferico con le membrane cellulari è reversibile e può essere regolata. Molti funzione di proteine di membrana periferico in vie di segnalazione e regolamentato associazione con membrane è un meccanismo per attivando o inibendo una via. Un esempio di una molecola di segnalazione che è una proteina di membrana periferico è il piccolo GTPase, RAS. Dopo una serie di modificazioni post-traduzionali che includono la modifica con un lipido di farnesyl, modificate C-terminale di una proteina RAS matura inserisce l’opuscolo citoplasmatico della membrana cellulare. In particolare, la membrana plasmatica è dove il RAS si aggancia il suo effettore a valle RAF1. Per impedire l’attivazione costitutiva della chinasi di proteina mitogene-attivata (MAPK), livelli multipli di controllo RAS sono a posto. Oltre a rendering RAS inattivo idrolizzando il GTP in PIL, RAS attivo anche può essere rilasciato dalla membrana plasmatica da modifiche o interazioni con solubilizzanti fattori per inibire la segnalazione. Anche se fluorescente live imaging offre biologi cellulari l’opportunità di osservare la localizzazione subcellulare delle proteine di membrana periferico della proteina-etichetta fluorescente1, ci rimane un bisogno fondamentale per valutare l’associazione della membrana di proteine endogene semi-quantitativamente con semplici approcci biochimici.
L’appropriata valutazione biochimica delle proteine partizionamento tra membrana e frazioni solubili è criticamente dipendono da due fattori: cellulare omogeneizzazione ed efficiente separazione della membrana e frazioni solubili. Anche se alcuni protocolli, tra cui i kit commercializzati più ampiamente usati, dipendono dall’omogeneizzazione di detergente a base di cellule, questi metodi possono offuscare analisi tramite l’estrazione di proteine di membrana nei solubile fase2. Di conseguenza, non detergente basati, meccanici metodi di distruzione cellulare forniscono risultati più puliti. Ci sono diversi metodi di rottura meccanica delle cellule in coltura o raccolte dal sangue o organi. Questi includono lisata omogeneizzazione, rottura fine dell’ago, cuscinetti a sfera omogeneizzazione, sonicazione e cavitazione di azoto. Qui valutiamo cavitazione di azoto e confrontarlo con altri metodi. Cavitazione di azoto si basa sull’azoto che è dissolto nel citoplasma delle cellule ad alta pressione. Dopo l’equilibratura, la sospensione cellulare bruscamente è esposta alla pressione atmosferica tale che bolle di azoto si formano nel citoplasma che strappare aperto la cella in conseguenza del loro effervescenza. Se la pressione è sufficientemente elevata, effervescenza di azoto possa interferire con il nucleo3 e membrana associato organelli come i lisosomi4. Tuttavia, se la pressione è mantenuta abbastanza bassa, la decompressione altererà la membrana plasmatica ed ER ma non altri organelli, quindi versare sia cytosol e organelli citoplasmici intatti nell’omogenato viene designato il cavitate5. Per questo motivo, la cavitazione di azoto è il metodo di scelta per l’isolamento di organelli come i lisosomi e mitocondri.
Tuttavia, è anche un ottimo modo di preparare un omogeneato che può essere facilmente separato in membrana e frazioni solubili. Il recipiente a pressione (d’ora in poi chiamato “the bomb”) utilizzato durante la cavitazione è costituito da un involucro di acciaio inox spessore che resiste ad alta pressione, con un ingresso per la consegna del gas dell’azoto da un serbatoio e un orificio di presa con valvola di scarico regolabile.
Cavitazione di azoto è stato utilizzato per l’omogeneizzazione delle cellule dal 1960s6. Nel 1961, Hunter e Commerfold7 stabilito cavitazione di azoto come una valida opzione per distruzione di tessuti di mammiferi. Da allora, i ricercatori hanno adattato la tecnica di varie cellule e tessuti con successo e cavitazione azoto è diventato un fiocco in più applicazioni, tra cui membrana preparazione8,9, nuclei e organello preparazione10,11ed estrazione biochimici labili. Attualmente, i biologi delle cellule più spesso impiegano altri metodi di omogeneizzazione delle cellule perché i benefici di omogeneizzazione di azoto non sono stati ampiamente pubblicizzati, bombe di azoto sono costose e c’è un equivoco che un numero relativamente elevato di celle è Obbligatorio. Protocolli per la cavitazione di azoto raggiungere omogeneati privo di cellule con nuclei intatti non sono stati pubblicati, e nelle valutazioni pubblicati più volumi di 20 mL di sospensione cellulare sono stati usati. Per adattare questa tecnica classica per soddisfare i requisiti attuali di lavorare con campioni di piccole dimensioni, vi presentiamo un protocollo modificato di cavitazione di azoto specificamente progettato per le cellule coltivate. Dopo cavitazione di azoto, l’omogeneizzato è separato in solubili (S) e frazioni di membrana (P) tramite centrifugazione differenziale, prima con un giro di basso-velocità per rimuovere i nuclei e cellule ininterrotte e poi con una rotazione ad alta velocità (> 100.000 x g) per separare membrane dalla frazione solubile. Analizziamo l’efficienza della separazione con immunoblots e confrontare cavitazione di azoto con altre tecniche di rottura meccanica. Studiamo anche l’effetto osmotico del buffer di omogeneizzazione durante la cavitazione di azoto.
I vantaggi della cavitazione di azoto rispetto ad altri metodi di rottura meccanica sono molteplici. Forse il vantaggio più significativo è la sua capacità a delicatamente ma efficacemente omogeneizzare campioni. I principi fisici di decompressione si raffredda campioni invece di generare riscaldamento locale danni quali ultrasuoni e attrito/tosatura basato su tecniche. La cavitazione è anche estremamente efficiente a perturbare la membrana plasmatica. Perché l’azoto bolle vengono generate all’interno di ogni singol…
The authors have nothing to disclose.
Questo lavoro è stato finanziato dalla GM055279, CA116034 e CA163489.
Cell Disruption Vessel (45 mL) | Parr Instrument | 4639 | Nitrogen cavitation Bomb |
Dounce homogenizer (2 mL) | Kontes | 885300-0002 | Dounce pestle and tube |
U-100 Insulin Syringe 28G½ | Becton Dickinson | 329461 | Needle |
Atg12 antibody | Santa Cruz | 271688 | Mouse antibody, use at 1:1000 dilution |
β-actin antibody | Santa Cruz | 47778 | Mouse antibody, use at 1:1000 dilution |
β-tubulin antibody | DSHB | E7-s | Mouse antibody, use at 1:5000 dilution |
Calnexin antibody | Santa Cruz | 23954 | Mouse antibody, use at 1:1000 dilution |
Calregulin antibody | Santa Cruz | 373863 | Mouse antibody, use at 1:1000 dilution |
Catalase antibody | Santa Cruz | 271803 | Mouse antibody, use at 1:1000 dilution |
CIMPR antibody | Abcam | 124767 | Rabbit antibody, use at 1:1000 dilution |
EEA1 antibody | Santa Cruz | 137130 | Mouse antibody, use at 1:1000 dilution |
EGFR antibody | Santa Cruz | 373746 | Mouse antibody, use at 1:1000 dilution |
F0-ATPase antibody | Santa Cruz | 514419 | Mouse antibody, use at 1:1000 dilution |
F1-ATPase antibody | Santa Cruz | 55597 | Mouse antibody, use at 1:1000 dilution |
Fibrillarin antibody | Santa Cruz | 374022 | Mouse antibody, use at 1:200 dilution |
Golgin 97 antibody | Santa Cruz | 59820 | Mouse antibody, use at 1:1000 dilution |
HDAC1 antibody | Santa Cruz | 81598 | Mouse antibody, use at 1:1000 dilution |
Hexokinase 1 antibody | Cell Signaling Technology | 2024S | Rabbit antibody, use at 1:1000 dilution |
Lamin A/C antibody | Santa Cruz | 376248 | Mouse antibody, use at 1:1000 dilution |
LAMP1 antibody | DSHB | H4A3-c | Mouse antibody, use at 1:1000 dilution |
Na+/K+ ATPase antibody | Santa Cruz | 48345 | Mouse antibody, use at 1:1000 dilution |
Rab7 antibody | Abcam | 137029 | Rabbit antibody, use at 1:1000 dilution |
Rab9 antibody | Thermo | MA3-067 | Mouse antibody, use at 1:1000 dilution |
RCAS1 antibody | Santa Cruz | 398052 | Mouse antibody, use at 1:1000 dilution |
RhoGDI antibody | Santa Cruz | 360 | Rabbit antibody, use at 1:3000 dilution |
Ribosomal protein S6 antibody | Santa Cruz | 74459 | Mouse antibody, use at 1:1000 dilution |
Sec61a antibody | Santa Cruz | 12322 | Goat antibody, use at 1:1000 dilution |
Thickwall Polycarbonate ultracentrifuge tube | Beckman Coulter | 349622 | Sample tube for ultracentrifugation |
TLK-100.3 rotor | Beckman Coulter | 349481 | rotor for ultracentrifugation |
Optima MAX High-Capacity Personal Ultracentrifuge | Beckman Coulter | 364300 | ultracentrifuge |
cOmplete protease inhibitor cocktail tablets | Roche | 11697498001 | protease inhibitors |
Cell Scrapers with 25cm Handle and 3.0cm Blade | Corning | 353089 | large cell scraper |
Magnetic Stir Bar | Fisher Scientific | 14-513-57SIX | micro stir bar |
Ceramic-Top Magnetic Stirrer | Fisher Scientific | S504501AS | magnetic stirrer |