Endotelio vascolare controlla strettamente reclutamento leucocitario. Diapedesi inadeguata contribuiscono a malattie infiammatorie umane. Di conseguenza, alla ricerca di nuovi elementi regolatori dell’attivazione endoteliale è necessaria ideare terapie migliori per disordini infiammatori. Qui, descriviamo una metodologia globale per caratterizzare nuovi regolatori endoteliale che possono modificare del leucocita traffico durante l’infiammazione.
Lo strato endoteliale è essenziale per il mantenimento dell’omeostasi nel corpo controllando molte funzioni diverse. Regolamento della risposta infiammatoria dallo strato endoteliale è fondamentale per combattere efficientemente ingressi è nocivi e aiuto nel recupero di aree danneggiate. Quando le cellule endoteliali sono esposti a un ambiente infiammatorio, ad esempio il componente esterno della membrana di batteri gram-negativi, lipopolisaccaride (LPS), esprimono solubile citochine pro-infiammatorie, quali Ccl5, Cxcl1 e Cxcl10 e innescare il attivazione dei leucociti circolanti. Inoltre, l’espressione di molecole di adesione sulla superficie endoteliale E-selectina, VCAM-1 e ICAM-1 consente l’interazione e l’adesione dei leucociti attivati per lo strato endoteliale e alla fine lo stravaso verso il tessuto infiammato. In questo scenario, la funzione endoteliale debba essere strettamente regolata perché attivazione eccessiva o difettosa nel reclutamento dei leucociti potrebbe portare a patologie infiammatorie. Poiché molti di questi disordini non hanno un trattamento efficace, è necessario studiare nuove strategie con un focus sullo strato vascolare. Vi proponiamo le analisi complete che sono utili per la ricerca di nuovi regolatori endoteliale che modificano la funzione del leucocita. Analizziamo l’attivazione endoteliale tramite le destinazioni di espressione specifici coinvolti nel reclutamento leucocitario (ad esempio, citochine, chemochine e molecole di adesione) con diverse tecniche, tra cui: (reazione a catena della polimerasi quantitativa in tempo reale RT-qPCR), western-blot, saggi di adesione e citometria di flusso. Questi approcci determinano la funzione endoteliale in contesto infiammatorio e sono molto utili per eseguire analisi di selezione per caratterizzare nuovi regolatori infiammatori endoteliale che sono potenzialmente utili per la progettazione di nuove strategie terapeutiche.
L’infiammazione è una risposta biologica benefica contro agenti infettivi, con lo scopo principale di eliminare il patogeno e riparare il tessuto danneggiato. In determinate condizioni, come le infezioni croniche o malattie autoimmuni, l’infiammazione non si risolve. Invece, c’è una reazione anomala con continua infiltrazione dei leucociti, conseguente a una risposta immunitaria prolungata che porta al danno tissutale, fibrosi, perdita della funzione e nel complesso, disabilità e in alcuni morte casi del paziente. Questi disordini umani, catalogati come malattie infiammatorie, tutti coinvolgono i vasi sanguigni per il controllo di stravaso del leucocita1,2.
Le cellule endoteliali gioca un ruolo fondamentale nella regolazione della risposta infiammatoria controllando il traffico del leucocita. Quando lo strato endoteliale è esposto a mediatori infiammatori quali LPS, l’endotelio che riposa attiva ed esprime le citochine pro-infiammatorie (Cxcl10, Cxcl5, Cxcl1, ecc.) e molecole di adesione (E-selectina, VCAM-1 e ICAM-1) quel favore reclutamento dei leucociti nel sito di infezione circolanti. I leucociti innescati dalle citochine rilasciate quindi mediano rotolamento e l’interazione con lo strato endoteliale attraverso le controparti adesive corrispondente: PSGL-1-selectina, integrina α4β1 VCAM-1 e αLβ2 integrina di ICAM-1. Infine, i leucociti migrano attraverso il sistema vascolare verso la messa a fuoco di infiammazione3.
Il ruolo essenziale dell’endotelio nella regolazione della risposta infiammatoria è stato dimostrato sui topi che sono stati geneticamente modificati per esprimere il LPS recettore, il recettore toll-like 4 (TLR4), solo sulle cellule endoteliali. Questi animali endoteliale TLR4 sono stati in grado di rispondere ad un’infiammazione LPS-mediata e per rilevare l’infezione generata dopo l’inoculo di batteri e di conseguenza ottenere un infezione risoluzione e sopravvivenza a livelli simili come i topi wild-type4 , 5.
Per raggiungere la risposta infiammatoria dell’endotelio-regolato, è stato postulato che l’inibizione in alcune fasi dell’interazione leucocita-endotelio comporterebbe la riduzione della migrazione trans-endoteliale e una migliore prognosi per malattie infiammatorie legate. In realtà, diverse strategie di targeting per l’interazione di attivazione e del leucocita-endotelio endoteliale sono state progettate per ostacolare lo stravaso delle cellule immuni come un trattamento per i disordini infiammatori6,7.
In questo rapporto, descriviamo un gruppo approfondito di tecniche in vitro per caratterizzare l’attività endoteliale in risposta a stimolo infiammatorio LPS e suo ruolo nella attivazione del leucocita e adesione allo strato vascolare. Il modello delle cellule endoteliali utilizzato in questo manoscritto era la linea di mouse del polmone delle cellule endoteliali (MLEC-04), come descritto da Hortelano et al. 8. linea cellulare il MLEC-04 è stato convalidato nella letteratura per essere un sistema adeguato per studiare l’attivazione endoteliale9,10. Basato su interessi di ricerca, questi approcci possono essere facilmente estrapolati per ogni endoteliale o sistemi del leucocita e profilo infiammatorio. Una volta definiti i parametri endoteliali in condizioni selezionate, il sistema può testare nuovi farmaci sulla sperimentazione proposta di valutare l’attivazione vascolare. In questo contesto infiammatorio, le cellule di endotelio testate con il composto di interesse possono essere paragonate per le condizioni di controllo delle cellule, ed eventuali differenze risultanti possono informare il risultato prognostico della droga per lo sviluppo e la progressione dell’infiammazione. Per concludere, vi proponiamo un sistema pertinente per caratterizzare nuovi bersagli farmacologici per le cellule endoteliali, che possono influenzare la progettazione di nuove terapie vascolari specifici contro le malattie infiammatorie legate.
Questo protocollo endothelial descrive una tecnologia graduale che costituisce le basi per esplorare nuovi meccanismi coinvolti nella regolazione della risposta infiammatoria. Questi approcci sono basati sullo studio dell’attività endoteliale stimolata da LPS e valutare i passaggi critici coinvolti nel reclutamento dei leucociti durante la risposta infiammatoria, in particolare: liberazione di citochine endoteliale, adesione endoteliale adesione di molecole del leucocita e l’espressione a livello vascolare. Una volta st…
The authors have nothing to disclose.
Questo lavoro è stato supportato dal Ministerio de Economía y Competitividad (MINECO) e l’Instituto de Salud Carlos III (ISCIII) (concessione numero IERPY 1149/16 da A.L.; MPY 1410/09 a S. Hortelano); da MINECO attraverso il Fondo de Investigación en Salud (FIS) (assegna numeri PI11.0036 e PI14.0055 a S. Hortelano). S. Herranz è stata sostenuta da IERPY 1149/16 da ISCIII.
Gelatin | Sigma | G9391 | |
DMEM-F12 | Lonza | BE12-719F | |
Fetal Bovine Serum | Sigma | A4503 | |
Penicillin streptomycin | Lonza | DE17-602E | |
Trypsine | Lonza | BE17-160E | |
EDTA | Sigma | ED2SS | |
LPS | Sigma | L2880 | |
Trizol | Sigma | T9424 | RNA extraction buffer |
Isopropanol | Sigma | 33539 | |
Ethanol absoluto | Panreac | 1,310,861,612 | |
Pure H2O | Qiagen | 1017979 | RNAse free |
Agarose | Pronadisa | 8020 | |
Stain for agarose gels | Invitrogen | s33102 | |
SuperScript III First-Strand Synth | Invitrogen | 18080051 | Reagents for RT-PCR |
Fast SYBR Green Master Mix | Applied Biosystems | 4385610 | Fluorescent stain for qPCR |
MicroAmp Fast Optical 96-Well | Applied Biosystems | 4346906 | Plates for qPCR |
U-bottom 96 well plates | Falcon | 353072 | |
Cytometry tubes | Falcon | 352054 | |
TX100 | Panreac | 212314 | Non-ionic surfactant |
Tris-HCl | Panreac | 1,319,401,211 | |
Sodium chloride | Merck | 1,064,041,000 | |
Sodium pyrophosphate | Sigma | 221368 | |
Sodium fluoride | Sigma | S7920 | |
Sodium orthovanadate | sigma | 13721-39-6 | |
Protease inhibitor cocktail | sigma | P8340 | |
Pierce BCA Protein Assay Kit | Pierce | 23225 | Reagents for bicinchoninic acid assay |
β-mercaptoethanol | merck | 805,740 | |
PVDF Transfer Membrane, 0.45 µm | Thermo Scientific | 88518 | |
Tween-20 | Panreac | 1,623,121,611 | Polysorbate 20 |
PBS | Lonza | BE17-515Q | |
ECL | Millipore | WBKLS0500 | |
Fibronectin | Sigma | F1141 | |
Laminin | Sigma | L2020 | |
Collagen type I | Sigma | c8919 | |
Acetic acid | Panreac | 1,310,081,611 | |
Trypan blue | Sigma | T8154 | |
Paraformaldehyde | Sigma | P6148 | |
Methanol | Panreac | 1,310,911,612 | |
Crystal violet | Sigma | HT90132 | |
Sodium citrate | Sigma | C7254 | |
Ethanol 96% | Panreac | 1,410,851,212 | |
CFSE | Sigma | 21888 | |
RPMI | Lonza | BE12-115F | |
SDS | Bio-Rad | 161-0418 | |
Infinite M200 | Tecan | M200 | Multi mode microplate reader |
Gel Doc 2000 | Bio-Rad | 2000 | Gel documentation system |
StepOnePlus | Applied Biosystems | StepOnePlus | qPCR system |
MACSQuant Analyzer 10 | Miltenyi Biotec | Analyzer 10 | Cytometry equipment |
ChemiDoc MP | Bio-Rad | MP | Chemiluminescence detection system |
Name | Company | Catalog Number | Comments |
Antibodies | |||
PECAM-1 | BD Biosciences | 553370 | Use at 10 µg/ml |
ICAM-2 | Biolegend | 1054602 | Use at 10 µg/ml |
E-selectin | BD Biosciences | 553749 | Use at 10 µg/ml |
VCAM-1 | BD Biosciences | 553330 | Use at 10 µg/ml |
ICAM-1 | Becton Dickinson | 553250 | Use at 10 µg/ml |
anti-rat IgG-FITC | Jackson Immuno Research | 112-095-006 | Use at 10 µg/ml |
anti armenian hamster-FITC | Jackson Immuno Research | 127-095-160 | Use at 10 µg/ml |
Rat IgG isotyope control | Invitrogen | 10700 | Use at 10 µg/ml |
Armenian hamster IgG isotype control | Invitrogen | PA5-33220 | Use at 10 µg/ml |
P-IκΒ-α | Cell Signaling | 2859 | Use at 10 µg/ml |
β-Actin | Sigma | A5441 | Use at 10 µg/ml |
P-ERK | Cell Signaling | 9101 | Use at 10 µg/ml |
anti-mouse HRP | GE Healthcare | LNXA931/AE | Use at 1:10000 |
anti-rabbit HRP | GE Healthcare | LNA934V/AG | Use at 1:10000 |
anti-rat HRP | Santa Cruz | Sc-3823 | Use at 1:10000 |