Ici, nous présentons une méthode pour exploiter efficacement le potentiel de différenciation cardiaques des jeunes sources de cellules souches mésenchymateuses humaines afin de générer des cellules fonctionnelles, contractants, cardiomyocyte-comme in vitro.
Infarctus du myocarde et la cascade ischémique ultérieure entraîner la perte étendue de cardiomyocytes, conduisant à l’insuffisance cardiaque congestive, la principale cause de mortalité dans le monde. Cellules souches mésenchymateuses (CSM) sont une option prometteuse pour les thérapies à base de cellules remplacer les techniques actuelles, envahissantes. MSCs peuvent se différencier en lignées mésenchymateuses, y compris les types de cellules cardiaques, mais complète différenciation en cellules fonctionnelles n’a pas encore été atteint. Les méthodes précédentes de différenciation reposaient sur des agents pharmacologiques ou de facteurs de croissance. Cependant, les stratégies pertinentes plus physiologiquement peuvent également activer MSCs subir des transformations cardiomyogénique. Nous présentons ici une méthode de différenciation utilisant des agrégats MSC sur couches de cardiomyocyte mangeoire pour produire des cellules maître cardiomyocyte.
Cordon ombilical humain périvasculaires cellules (HUCPVCs) ont démontré avoir une différenciation plus grande potentielle que couramment étudié les types de MSC, comme la moelle osseuse MSCs (BMSC). Comme une source ontologiquement plus jeune, nous avons étudié le potentiel de cardiomyogénique de HUCPVCs de (FTM) au premier trimestre par rapport à des sources plus anciennes. FTM HUCPVCs constituent une source originale, riche de MSCs qui conservent leurs in utero immunoprivileged propriétés lorsque cultivées in vitro. Utilisant ce protocole de différenciation, la FTM et le terme HUCPVCs atteint cardiomyogénique une augmentation significative de différenciation par rapport à BMSC, comme en témoigne l’augmentation de l’expression des marqueurs de cardiomyocytes (c.-à-d., myocytes enhancer facteur 2C, troponine T, la myosine cardiaque de chaîne lourde, signal protéine régulatrice α et connexin 43). Ils ont soutenu également significativement plus faible immunogénicité, tel que démontré par leur plus faible expression de HLA-A et l’expression de HLA-G plus élevée. Application de différentiation axée sur l’agrégat, FTM HUCPVCs a montré formation globale accrue potentiels et généré contractantes des amas de cellules dans la semaine suivant la co-culture sur couches alimentation cardiaque, devenant le premier type MSC de le faire.
Nos résultats démontrent que cette stratégie de différenciation permet d’exploiter efficacement le potentiel de cardiomyogénique du jeunes MSCs, tels que les FTM HUCPVCs et suggère que cette différenciation in vitro préliminaire pourrait être une stratégie possible pour augmenter leur efficacité régénératrice in vivo.
Insuffisance cardiaque congestive (ICC) persiste comme des principales causes de morbidité et de mortalité dans le monde. CHF survient souvent suite à la perte massive des cardiomyocytes et le développement du tissu de cicatrice acellulaire pathologique suite à un infarctus du myocarde (im)1. Alors que le cœur est un organe partiellement autorenouvellement, le résident souches et progénitrices cell pool chargé d’exécuter la régénération tissulaire significativement diminue dans l’abondance et la fonction chez les patients âgés, devenant souvent insuffisante pour une récupération optimale après une blessure. Il y a donc beaucoup d’intérêt dans le développement des traitements expérimentaux qui impliquent la transplantation de cellules de donneur sain dans le myocarde endommagé. Il est impératif que les cellules du donneur non seulement restaurer la structure du tissu, mais aussi réaliser la récupération fonctionnelle du myocarde touché.
Le cœur natif emploie coeur tissu-résident et endogènes provenant de la moelle osseuse des cellules souches pour blessure après réparation2,3,4. Régénératrice des cellules hôtes et donateurs dérivés-alike-doit avoir la capacité d’obtenir le phénotype approprié et la fonction dans le micro-environnement du myocarde retouche, ainsi que la capacité de façon efficace et sécuritaire remplacer les cellules perdues. Méthodes de différenciation in vitro ont servi largement à atteindre de haut rendement, sur les cellules souches cardiomyocyte production5,6. Le profil d’expression des marqueurs de la lignée cardiaque sert à définir le processus de différenciation des cellules souches vers la lignée cardiaque7. Marqueurs de différenciation précoce, tels que NKX2.5, facteur de renforceur de myocyte 2C (Mef2c) et GATA48,9, peuvent être une indication de l’ouverture du processus cardiomyogénique. Marqueurs de cardiomyocyte mature couramment utilisées pour évaluer l’efficacité de différenciation sont signal protéine régulatrice α (SIRPA)10, troponine T (cTnT)11, la chaîne lourde de la myosine cardiaque (MYH6)8,12,13et connexine 43 (Cx43)14,15,16. Les méthodes utilisant des cellules souches embryonnaires (CSE) et les cellules souches pluripotentes (CSP) ont été soigneusement optimisés et discutés concernant les détails des facteurs inductifs, de l’oxygène et de nutriments dégradés et le moment exact de l’action5,6,7,17,18. Néanmoins, ESC et CFP-axée sur les technologies présentent toujours plusieurs préoccupations éthiques et de sécurité, ainsi que des caractéristiques électrophysiologiques et immunologiques sous-optimale19,20. Hôtes transplantés ces cellules souvent expérience immunorejection et nécessitent une immunosuppression permanente. C’est principalement en raison d’une non-concordance de majeur d’histocompatibilité (MHC) des molécules complexes dans l’hôte et les bailleurs de fonds et à la résultante lymphocytes réponse21. Tout en individuel MHC classe I correspondant est une solution possible, une pratique clinique plus accessible nécessiterait une source de cellules qui est universellement immunoprivileged à surmonter la crainte de rejet.
Comme une source de cellule de rechange pour l’usage dans des applications cliniques, MSCs et en particulier, BMSC, ont été étudiées pour une utilisation dans la régénération des tissus depuis leur description initiale en 1995,22. MSCs sont censés être résidents cellules régénératrices qui peuvent être trouvés dans presque n’importe quel tissu vascularisé23. Sur l’isolation de la source souhaitée, MSCs peuvent facilement être étendus dans la culture, ont paracrine vaste capacité et possèdent souvent immunoprivileged ou immunomodulateurs propriétés24,25. Leur innocuité et l’efficacité ont déjà été démontrés dans plusieurs études précliniques, en particulier pour la régénération cardiaque3,26.
Plusieurs stratégies de différenciation des MSC utilisent des agents pharmacologiques, tels que la 5-azacytidine22 et27de DMSO et croissance ou morphogéniques facteurs, tels que BMP5,7,28,29 ou l’angiotensine-II30, avec une efficacité variable. Ces stratégies, cependant, ne sont pas fondées sur les obstacles qu’une cellule régénératrice de naïve est susceptible de rencontrer après domiciliation ou remis à l’endroit de la blessure in vivo. Des stratégies plus physiologiquement pertinents, bien que plus difficiles à définir et manipuler, reposent sur la prémisse que la différenciation MSC peut être induite par le biais de signaux provenant du microenvironnement tissu lui-même. Des études antérieures ont montré que l’exposition à la cellule cardiaque lysats31 ou le myocarde ventriculaire32,33, ou directement auprès des cardiomyocytes primaire in vitro15,34, peut augmenter l’expression des marqueurs cardiaques dans MSCs. D’autres ont démontré cardiomyogénèse spontanée après le traitement de lésions cardiaques avec MSCs35,36,37,38, bien qu’en partie, la fusion du BMSC et cardiomyocytes39,40 généré le myocarde naissant. À notre connaissance, des cardiomyocytes fonctionnels, contractants spontanément de MSCs humaines (CSM) de n’importe quelle source de tissus n’ont pas encore été signalées.
Le consensus actuel est que MSCs tous les proviennent de cellules périvasculaires23. MSCs Young avec des propriétés de pericyte peuvent être isolés de la région périvasculaire du cordon ombilical humain tissu41,42,43. En comparaison avec BMSC, HUCPVCs possèdent la différenciation accrue potentielle et plusieurs autres avantages régénératrices, les deux in vitro41,44 et in vivo45,46,47. En particulier, la source étant l’interface materno-foetale, HUCPVCs ont significativement plus faible immunogénicité comparée aux sources adultes de MSCs. Nos recherches portent sur la caractérisation et applications précliniques de FTM HUCPVCs, la plus jeune source de MSCs, objet d’une enquête, dont nous avons déjà montré a augmenté de multilineage proliférative et plu les capacités de différenciation, y compris dans la lignée de cardiomyogénique41.
Nous présentons ici un protocole qui combine formation globale et couches de cellule cardiaque primaire chargeur inductifs forces pour atteindre la différenciation cardiomyogénique complète d’agrégats MSCs. fournir un environnement 3D, qui modélise mieux des conditions in vivo par rapport aux cultures adhérentes 2D. Utilisant des couches cardiaque chargeur fournit un environnement qui soit représentative du site transplantation ultime pour les MSCs. Nous démontrons que les plus jeunes sources de MSCs isolées de cordons ombilicaux de pré ou post natals ont une plus grande capacité à former des agrégats et rejoindre le phénotype cardiaque comparativement à BMSC adultes, tout en conservant leur privilège immunitaire. Outre l’élévation abrupte de gènes marqueurs cardiaques lignage et l’expression induite d’intracellulaire (c.-à-d. cTnT et MYH6) et les protéines de surface cellulaire (c.-à-d., SIRPA et Cx43) spécifique pour les cardiomyocytes, nous montrons que le potentiel de différenciation des FTM HUCPVCs peut être exploité grâce à cette méthode et qu’ils peuvent donner lieu au contractant spontanément cellules cardiomyocytes.
La différenciation cardiaque de cellules souches a été en développement depuis plus de 2 décennies, avec plusieurs différentes stratégies utilisées pour générer des cellules cardiomyocytes provenant de sources MSC. Beaucoup de ces stratégies, cependant, sont inefficaces, et les conditions d’utilisation ne sont souvent pas représentatifs du milieu transplanté des cellules rencontre in vivo.
Contrairement aux méthodes existantes, le protocole présenté ici utilise une c…
The authors have nothing to disclose.
Les auteurs remercie les membres du personnel suivants et recherche du personnel pour leur contribution : Matthew Librach, Leila Maghen, Tanya A. Baretto, Shlomit Kenigsberg et Andrée Gauthier-Fisher. Ce travail a été soutenu par le Fonds de recherche The Ontario – Excellence de la recherche (ER-FRO, tour #7) et créer Program Inc.
0.25% Trypsin/EDTA | Gibco | 25200056 | For cell dissociation |
Alpha-MEM | Gibco | 12571071 | For HUCPVC and BMSC culture media. |
PE-conjugated anti-human/mouse CD49f antibody | Biolegend | 313612 | Integrin marker for FC |
APC-conjugated human Cx43/GJA1 antibody | R&D Systems | FAB7737A | Connexin 43 marker for FC |
FITC-conjugated HLA-A2 antibody | Genway Biotech Inc. | GWB-66FBD2 | Immunogenicity marker for FC |
FITC-conjugated anti-HLA-G [MEM-G/9] antibody | Abcam | ab7904 | Immunogenicity marker for FC |
FITC-conjugated mouse anti-human SIRPA/CD172a antibody | AbD Serotec/Bio-Rad | MCA2518F | Cardiac marker for FC |
APC-conjugated human TRA-1-85/CD147 antibody | R&D Systems | FAB3195A | Human cell marker for FC and FACS |
FITC-conjugated human TRA-1-85/CD147 antibody | R&D Systems | FAB3195F | Human cell marker for FC and FACS |
Anti-connexin 43/GJA1 antibody | Abcam | ab11370 | Cx43. For ICC |
Goat anti-rabbit IgG (H+L) cross-absorbed secondary antibody, Alexa Fluor 555 | Life Technologies | A-21428 | For ICC |
Anti-sarcomeric alpha actinin [EA-53] antibody | Abcam | ab9465 | aSARC. For ICC |
Goat anti-mouse IgM heavy chain cross-absorbed secondary antibody, Alexa Fluor 555 | Life Technologies | A-21426 | For ICC |
Mef2C (D80C1) XP rabbit antibody | New England BioLabs Ltd. | 5030S | For ICC |
Donkey anti-rabbit IgG (H+L) secondary antibody, Alexa Fluor 488 | Life Technologies | A-21206 | For ICC |
Anti-nuclei (HuNu) (clone 235-1) antibody | EMD Millipore | MAB1281 | For ICC |
MZ9.5 Stereomicroscope | Leica | For imaging aggregates. | |
1.5 ml centrifuge microtubes | Axygen | MCT-150-C | For staining MSCs with fluorescent dye. |
ImageJ | Open source image processing software. | ||
Aria II | BD | UHN SickKids FC Facility. For cell sorting. | |
Bone marrow mesechymal stromal cells | Lonza | PT-2501 | BMSCs |
Bovine serum albumin | Sigma-Aldrich | A7030-100G | BSA. To prepare solutions for ICC |
BrdU | EMD Millipore | MAB3424 | Caution: BrdU is a strong teratogen and suspected mutagen. Please ensure proper training and refer to the SDS before use. |
Canto II | BD | UHN SickKids FC Facility. For flow cytometry. | |
cDNA EcoDry Premix | Clontech/Takara | 639570 | For preparation of cDNA for qPCR |
CellTracker Green CMFDA Dye | Life Technologies | C7025 | Fluorescent imaging of cell cytoplasm |
Countess automated cell counter | Invitrogen Inc. | C10227 | For cell counting |
DMEM-F12 | Sigma-Aldrich | D6421 | For rat primary cardiomyocyte culture medium. |
Dulbecco's Phosphate Buffered Saline | Gibco | 10010023 | D-PBS, without Ca2+, Mg2+ |
EVOS | Life Technologies | In-house fluorescent microscope | |
FACSCalibur | BD | In-house. For flow cytometry. | |
Fetal bovine serum (Hyclone) | GE Healthcare | SH3039603 | FBS. Component of cell culture medium. |
IDT Prime Time qPCR probes | Integrated Data Technologies | FAM fluorophore | http://www.idtdna.com/pages/products/gene-expression/primetime-qpcr-assays-and-primers |
Lab Vision PermaFluor Aqueous Mounting Medium | ThermoScientific | TA-030-FM | For storage of cells to undergo ICC |
LSR II | BD | UHN SickKids FC Facility. For flow cytometry. | |
MoFlo Astrios | Beckman Coulter | UHN SickKids FC Facility. For cell sorting. | |
Normal goat serum | Cell Signaling Technology | 5425S | NGS. Used in blocking solution for ICC |
Nunc Lab-Tek II Chamber Coverglass, 8-wells | Thermo Scientific Nunc | 155409 | To prepare samples for ICC |
OmniPur Triton X-100 Surfactant | EMD Millipore | 9410-OP | As a component of permeabilizing solution when preparing cells for ICC |
Paraformaldehyde, 16% Solution, EM Grade | Electron Microscopy Sciences | 15710 | For fixing cells for ICC. |
Penicillin/streptomycin | Gibco | 15140122 | Component of cell culture medium. |
Primers | Sigma | Custom Standard DNA Oligos, Desalted, 0.2 μmol | CTnT_F: GGC AGC GGA AGA GGA TGC TGA A; CTnT_R: GAG GCA CCA AGT TGG GCA TGA ACG A; MYH6 F: GCA AAG TAC TGG ATG ACA CGC T; MYH6 R: GTC ATT GCT GAA ACC GAG AAT G |
Quorum Spinning Disk Confocal | Zeiss | SickKids Imaging Facility | |
ReproCardio hiPS cell derived cardiomyocytes | ReproCell | RCD001N | Positive control for qPCR |
RNeasy mini kit | Qiagen | 74106 | To isolate RNA for qPCR |
Rotor-Gene SYBR Green PCR Kit | Qiagen | 204074 | For qPCR with master mix |
RPMI 1640 | Gibco | A1049101 | For MSC, monocyte coculture medium. |
TaqMan qPCR primer assays | Thermo Fisher Scientific | 4444556 | For qPCR |
Trypan Blue | Life Technologies | T10282 | Staining of cells for viability and counting |
Trypsin | Gibco | 272500108 | For cell dissociation |
Volocity | Perkin-Elmer | Volocity 6.3 | Imaging software |
0.2 μm pore filter | Thermo Fisher Scientific | 566-0020 | For sterilizing tissue culture media |
HERAcell 150i CO2 Incubator | Thermo Fisher Scientific | 51026410 | For incubating cells |
Dulbecco's phosphate buffered saline | Sigma-Aldrich | D8537 | PBS. 1X, Without calcium chloride and magnesium chloride |
Forceps | Almedic | 7727-A10-704 | For handing rat heart. Can use any similar forceps. |
Scissors | Fine Science Tools | 14059-11 | For mincing rat heart. Curved scissors recommended. |
50 mL tube | BD Falcon | 352070 | For collection during cardiomyocyte collection and general tissue culture procedures |
15 mL tube | BD Falcon | 352096 | For general tissue culture procedures |
6-well plates | Thermo Scientific Nunc | CA73520-906 | For tissue culture |
10 cm tissue culture dishes | Corning | 25382-428 | For aggregate formation |
Axiovert 40C Microscope | Zeiss | For bright-field imaging through out tissue culture and the rest of the protocol | |
70 μm cell strainer | Fisherbrand | 22363548 | To ensure a single cell suspension before flow cytometry or sorting |
Triton X-100 | EMD Millipore | 9410-1L | Used in permeabilization solution for ICC |
Hoechst 33342 | Thermo Fisher Scientific | H1399 | Stain used during visualization of Cx43 localization |