Here, the authors present a simple and efficient protocol to define a linear antigenic epitope using a purified monoclonal antibody and peptide scanning through dot-blot hybridization. The identified epitope can then be used in therapeutic and diagnostic applications.
L'identification d'un epitope antigénique par le système immunitaire permet la compréhension du mécanisme de protection d'anticorps neutralisants qui peuvent faciliter le développement de vaccins et de médicaments peptidiques. balayage peptidique est une méthode simple et efficace qui mappe carrément l'épitope linéaire reconnu par un anticorps monoclonal (mAb). Ici, les auteurs présentent une méthodologie de détermination de l'épitope impliquant des protéines recombinantes en série tronquées, la conception de peptides synthétiques et hybridation dot-blot pour la reconnaissance antigénique du virus de la nécrose nerveuse protéine d'enveloppe en utilisant un mAb neutralisant. Cette technique repose sur l'hybridation dot-blot de peptides synthétiques et des mAb sur un fluorure de polyvinylidène (PVDF). La région antigénique minimum d'une protéine d'enveloppe virale reconnue par le RG-M56 mAb peut être réduite par l'étape par étape taillée cartographie peptidique sur un épitope de peptide 6-mer. En outre, le balayage d'alanine mutagenèse et les résidus sousconstitution peut être effectuée pour caractériser l'importance de liaison de chaque résidu d'acides aminés constituant l'épitope. Les résidus flanquant le site d'épitope ont été trouvés à jouer un rôle critique dans la régulation peptide de conformation. Le peptide d'épitope identifié peut être utilisé pour former des cristaux de complexes peptide-anticorps épitope pour une étude de diffraction des rayons X et de la compétition fonctionnelle ou pour la thérapeutique.
Dans le système immunitaire, la recombinaison V, D et J pour les anticorps segments permet de créer des variations considérables des régions déterminant la complémentarité (CDR) pour la liaison à des antigènes différents pour protéger l'hôte contre une infection pathogène. La défense de neutralisation des anticorps dirigés contre des antigènes dépend de la complémentarité spatiale entre les CDRs de l'anticorps et les épitopes des antigènes. Par conséquent, une compréhension de cette interaction moléculaire facilitera la conception d'un vaccin prophylactique et le développement peptide médicament thérapeutique. Cependant, cette interaction de neutralisation peut être influencée à la fois par de multiples domaines antigéniques à partir d'un seul antigène et par plusieurs CDR d'anticorps, ce qui rend par conséquent le procédé de détermination de l'épitope plus complexe. Heureusement, le développement de la technologie des hybridomes, qui fusionne les cellules productrices d'anticorps individuelles avec des cellules de myélome, permet de diviser un lot de cellules en permanence à secrete un anticorps spécifique, connu comme un anticorps monoclonal (mAb) 1. Les cellules d'hybridome produisent ces mAb, à haute affinité pures pour se lier à un domaine antigénique unique d'un antigène spécifique. La relation de l'antigène-anticorps mis en place, plusieurs approches, y compris le balayage des peptides, peut être utilisé pour déterminer l'épitope d'un antigène en utilisant son anticorps monoclonal correspondant. Les développements récents dans la technologie de peptide synthétique ont fait la technique de balayage de peptide plus accessible et plus commode d'exécuter. En bref, un ensemble de peptides synthétiques se chevauchant sont produites selon une séquence de l'antigène cible et sont associés à une membrane supporté sur un solide pour mAb hybridation. balayage Peptide non seulement offre un moyen simple pour cartographier la région de liaison de l'anticorps, mais facilite également l'acide aminé (aa) la mutagenèse par balayage de résidus ou de substitution pour évaluer l'interaction de liaison entre chaque résidu aa du peptide d'épitope et les CDR de l'anticorps.
<p class = "jove_content"> Ici, la présente étude décrit un protocole pour l'identification efficace de l'épitope linéaire du mérou jaune virus de la nécrose nerveuse (YGNNV) protéine d'enveloppe en utilisant une neutralisation mAb 2, 3, 4. Le protocole comprend mAb préparation, la construction et l'expression de protéines recombinantes tronquées en série, la conception de peptides se chevauchant de synthèse, hybridation dot-blot, le balayage d'alanine et la mutagenèse par substitution. Compte tenu du coût élevé de la synthèse peptidique, l'étape consistant à tronquer en série les protéines recombinantes d'une protéine cible souhaitée a été modifiée, et la région antigénique a été réduit à environ 100 à 200 résidus aa avant la synthèse réseau peptidique analyse dot-blot a été réalisée.Ce protocole offre une technique simple et rapide pour identifier un épitope linéaire mAb reconnu. Prenant en considération le coût de la synthèse peptidique et l'efficacité des peptides de synthèse de la production, de la région antigénique de la protéine d'enveloppe du virus a été réduite par l'expression de protéines recombinantes tronquées en série avant l'analyse de balayage de peptides. En tant que tel, le système d'expression pET de E. coli fiable et efficace a été …
The authors have nothing to disclose.
The authors thank Miss Ching-Chun Lin and Miss Diana Lin of the Core Facility of the Institute of Cellular and Organismic Biology (ICOB) of Academia Sinica for offering their expertise on peptide synthesis and DNA sequencing, respectively. This study was supported by Academia Sinica.
Hybrid-SFM medium | Gibco | 12045-076 | |
Dulbeccos's Phophate-Buffered Saline (PBS) | Gibco | 21600-069 | |
Pfu DNA Polymerase | Thermo Scientific | EP0502 | Including buffers |
T4 DNA Ligase | Roche | 10799009001 | Including buffers |
NdeI | New England Biolabs | R0111S | Including buffers |
XhoI | New England Biolabs | R0146S | Including buffers |
pET-20b(+) vector | Novagen, Merck Millipore | 69739 | |
E.coli DH-5α competent cell | RBC Bioscience | RH617 | |
E.coli BL-21(DE3) competent cell | RBC Bioscience | RH217 | |
Ampicillin | Amresco | 0339-25G | |
LB broth | Invitrongen | 12780-052 | |
Isopropylthio-β-D-thiogalactoside (IPTG) | MDBio, Inc. | 101-367-93-1 | |
Methanol | Merck Millipore | 106009 | |
Polyoxyethylene 20 Sorbitan Monolaurate (Tween-20) | J.T.Baker | X251-07 | |
Dimethyl sulfoxide (DMSO) | Sigma | D2650 | |
Glycine | Amresco | 0167-5KG | |
Tris | Affymetrix, USB | 75825 | |
NaCl | Amresco | 0241-1KG | |
EDTA | Amresco | 0105-1KG | |
Glycerol | Amresco | 0854-1L | |
NaN3 | Sigma | S2002-500G | |
BCIP/NBT | PerkinElmer | NEL937001PK | |
Goat Anti-Mouse IgG, Fc fragment antibody | Jackson ImmunoResearch | 115-055-008 | |
Immobilon-P (Polyvinylidene fluoride, PVDF) | Merck Millipore | IPVH00010 | |
Protein G Agarose Fast Flow | Merck Millipore | 16-266 | |
QIAquick PCR Purification kit | Qiagen | 28106 | |
UVP BioSpectrum 600 Image System | UVP | n/a | |
VisionWorks LS Analysis Software Ver 6.8 | UVP | n/a | |
MyCycler thermal cycler | BioRad | 1709713 |