Zebrafish retinal regeneration has mostly been studied using fixed retinas. However, dynamic processes such as interkinetic nuclear migration occur during the regenerative response and require live-cell imaging to investigate the underlying mechanisms. Here, we describe culture and imaging conditions to monitor Interkinetic Nuclear Migration (INM) in real-time using multiphoton microscopy.
An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP]mi2004 zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.
Unlike humans, zebrafish (Danio rerio) exhibit a robust regeneration response upon cell death of retinal neurons1,2,3,4. Tumor necrosis factor α, a signaling molecule that is released from dying retinal neurons induces Müller glia residing in the basal Inner Nuclear Layer (INL) of the retina, to proliferate5 and produce neuronal progenitor cells that continue to proliferate before differentiating into the neuronal cell types that died2,3,4. During the proliferative phase of the regeneration response, the nuclei of Müller glia and their derived neuronal progenitor cells undergo a repetitive migratory pattern in phase with the cell cycle (Interkinetic Nuclear Migration, INM)6,7. Nuclei positioned in the basal INL replicate their DNA before migrating to the Outer Nuclear Layer (ONL) where they divide before the arising nuclei return basally to the INL. This process was first described during neuroepithelial development using histological methods, while live-cell imaging approaches later confirmed the interpretation by Sauer8,9,10,11,12. Both histochemical and live-cell imaging approaches have been used to determine mechanisms underlying INM and its function in developing neuroepithelia including the retina9,11,12,13. However, the mechanisms governing INM in the adult regenerating retina have not been studied in much detail6,7. Live-cell imaging will be an invaluable approach to advance our knowledge of the signaling pathways that control INM in the adult regenerating retina.
Until recently, live-cell imaging of INM in the retina was limited to either live zebrafish embryos or to embryonic chick or postnatal mouse retinal explants9,10,11,12,14,15,16. While retinal explants from adult animals of a variety of species including mouse, rat and zebrafish have been utilized for different cell biological approaches17,18,19,20, live-cell imaging experiments using retinal explants have been restricted to brief periods of time and have not been executed continuously over several hours21,22. Here, we describe a detailed protocol to culture light-damaged adult zebrafish retinas to perform live-cell imaging experiments monitoring INM using multi-photon microscopy6. Live-cell imaging approaches are advantageous over immunohistochemical methods when investigating the mechanisms controlling INM, as the dynamics of INM, e.g., velocities might be affected rather than the location of mitosis, which would potentially not be detected using immunocytochemistry.
In the future, this method has also the potential to be modified to study other dynamic processes during retinal regeneration, such as phagocytosis of dying photoreceptors by Müller glia or the behavior of microglia.
Note: Zebrafish were raised and maintained in the Notre Dame Zebrafish facility in the Freimann Life Sciences Center. The methods described in this manuscript are approved by the University of Notre Dame Animal Care and Use Committee and are in compliance with the statement for the use of animals in vision research by the Association for Research in Vision and Ophthalmology.
1. Solutions
2. Light-damage Paradigm
3. Preparation for Culturing (On the Day of Retinal Isolation)
4. Isolation and Culturing of Retinal Explants
NOTE: The protocol outlined below is for the isolation of the dorsal retina, which is the retinal region that is predominantly lesioned by the described light-damage paradigm. Therefore, damage-induced proliferation and the associated event of interkinetic nuclear migration occur in the dorsal retina. However, the isolation procedure can be adjusted to yield retinal regions according to the specific requirements of the researcher/research question.
5. Multiphoton Microscopy
NOTE: The experiments performed in this manuscript were optimized for a multiphoton microscope equipped with an infrared laser (see Table of Materials), a 40X Apo long distance water immersion objective (N.A. 1.15), a galvanometer scanner and an environmental chamber that contains an insert for four 35 mm Petri dishes. The images were acquired with a non-descanned detector (R-NDD).
6. Analysis of Velocity
The isolation of the retina according to the procedure outlined in the schematic in Figure 1 allows the culturing of a flattened dorsal retina from light-damaged adult Tg[gfap:nGFP]mi2004 zebrafish over a period of at least 24 h in a 5% CO2/air environment. These flat-mounted retinal explants can be used to image focal planes at deep tissue levels. An example is Müller glia/neuronal progenitor cell nuclei labeled with GFP from the Müller glia-specific promoter gfap (glial fibrillary acidic protein) that are located in the ONL during mitosis in the light-damaged retina (Figures 2A – D, 3). To further confirm that this approach is applicable to image the various retinal cell layers, acutely isolated retinal explants were prepared from undamaged Tg[rho:Eco.NfsB-EGFP]nt19 zebrafish eyes that express EGFP in rod photoreceptors under the rhodopsin promotor. Figure 2E – H shows that it is possible to acquire images of GFP-positive rod photoreceptor and their inner segments. As rod inner segments extend between cone photoreceptors towards the retinal pigment epithelium, these data would imply that it is also possible to image cone photoreceptors. This was however not further investigated.
Having observed Müller glia/neuronal progenitor cell nuclei in the ONL in the light-damaged retina, we characterized their migratory behavior in detail (Figure 3 and Movie 1). Müller glia/neuronal progenitor cell nuclei labeled by GFP migrate bi-directionally between the basal position of the INL where they typically reside and the ONL, the site of photoreceptor loss. Typically, gfap:nGFP-positive nuclei migrated a short distance in the INL (Figure 3A – C) before they underwent nuclear envelope breakdown, while still positioned in the INL, based on the redistribution of GFP into the cytoplasm of the entire Müller glia/neuronal progenitor cell (Figure 3D). Following cell division in the ONL, two gfap:nGFP-positive nuclei became visible in the ONL (Figure 3F, G) that returned to the basal INL (Figure 3H – J). Upon cell division, the newly arising nuclei were initially very dim and therefore difficult to identify (Figure 3G). However, within one to two time frames after mitosis, nuclear GFP fluorescence became bright, which enabled the visualization of nuclear migration (Figure 3H – J). Live-cell imaging also allowed the visualization of the division plane (Figure 3F, G), which occurred horizontally to the apical surface of the retina for the cell shown in Figure 3. It is also feasible to use other transgenic zebrafish lines such as the Tg[gfap:EGFP]nt11 zebrafish that express GFP in the cytoplasm (data not shown). Although it is possible to reliably determine apical movement and horizontal cell divisions, it is often difficult to exactly identify the position of the basally migrating daughter nuclei and vertical cell divisions in the Tg[gfap:EGFP]nt11 zebrafish retina (data not shown).
To determine the velocity, a gfap:nGFP-positive nucleus that did not migrate throughout the recording period was chosen as reference point (star, Figure 4A – E). The distance of the migrating nucleus (vertical red line, Figure 4A – E) was determined in relation to the reference gfap:nGFP-positive nucleus (horizontal red line, Figure 4A – E) at each timepoint of the image series on maximum xz or yz-projections (depending at which angle the nuclei could be visualized most efficiently). The distance that the nucleus migrated was plotted against the time in a spreadsheet (Figure 4F – H). Nuclear membrane breakdown was often observed in the graph as an initial basalward movement due to the re-distribution of GFP within the entire cell (basal most part of the cell body in this instance). The apical velocity was determined before nuclear envelope breakdown, fitting a linear regression curve (grey dotted line, Figure 4G) to the distance plotted against the time for the period before nuclear envelope breakdown (red diamond, Figure 4G). The slope 'm' of the linear regression curve (y = mx+c) represents the velocity 'dx/dt'. The apical velocity for the cell presented in Figure 4 was 10.89 µm/h. The same approach was applied to calculate the velocity of the initial rapid basal movement (vb) of the newly formed daughter nuclei (Figure 4F, H). The basal migration velocities vb of -67.71 and 33.51 µm/h of daughter cells D1 and D2, respectively, were comparably faster than the apical velocity. Unfortunately, it was not possible to determine the apical velocity after nuclear envelope breakdown as the GFP diffused throughout the entire cell. Instead, the instantaneous velocity was calculated based on the timing and position of the nucleus before nuclear envelope breakdown and the first visualization of the newly formed daughter nuclei. The instantaneous velocity of 7.9 µm/h for the cell shown in Figure 4 is likely an underestimate as the chromatin reaches the ONL prior to telophase of mitosis, when the daughter nuclei become visible.
To summarize, the culture of retinal explants allows live-cell imaging of INM in the adult regenerating zebrafish retina and the determination of migration and cell division parameters of individual nuclei.
Figure 1: Retinal Isolation Procedure. A) Schematic illustrating a zebrafish head with its eye. B) The eye is removed from the zebrafish and oriented to show the front of the eye with the pupil. C) Turn the eye 180 ° so that the back of the eye with the optic stalk (filled black circle) becomes visible in (D) and the pupil faces downwards. The grey color indicates the presence of the sclera of the eye. E) One blade of a pair of McPherson-Vannas scissors is inserted into the optic stalk of the eye (filled black circle) to cut it into its dorsal and ventral sides which is indicated by the white segmented line. F) Dorsal half of the eye after the ventral half was removed. The black half circle indicates the residual part of the optic stalk. G) Turn the eye 90 ° backward to reveal (H) the inside of the eye with the retina (brown), vitreous (not shown) and the lens (L, light grey circle) that is still encased by the sclera (grey line). I) The sclera was detached (note, grey line is missing) and J) the lens and vitreous removed giving rise to only the retina (brown). K) Retina turned 90 ° forward giving rise to a flat-mount view of the dorsal retina (L). M) Dorsal retinal explant flat-mounted on a glass-bottom fluorodish. Please click here to view a larger version of this figure.
Figure 2: 3-D Reconstruction of Retinal Multiphoton Z-Stacks. A) 3-D reconstruction of a multiphoton z-stack image series of gfap:nGFP-positive cells in retinal whole-mount cultures from zebrafish after 48 h of light-damage. B – D) Single multiphoton xy-images of gfap:nGFP-positive cells displayed in the 3D-reconstruction in (A) at the level of the ONL (B), the INL (C), which corresponds to the layer that contains Müller glia soma and the GCL (D). Arrow in (B) indicates an enlarged round Müller glia in the ONL after nuclear envelope breakdown. E) 3-D reconstruction of a multiphoton z-stack image series of a retinal explant from an undamaged Tg[rho:Eco.NfsB-EGFP]nt19 zebrafish. F – H) Single multiphoton xy-images at the level of the rod inner segments (RIS, F), rod nuclear layer (G) and at the level of the inner retina (H). GCL, Ganglion Cell Layer; INL, Inner Nuclear Layer; ONL, Outer Nuclear Layer; RIS, Rod Inner Segment. Scale bar in A, D, E and H, 10 µm. Please click here to view a larger version of this figure.
Figure 3: Timelapse Image Series of INM. A – J) Image series of 3D-reconstruction of z-stack timelapse series displaying Tg[gfap:nGFP]mi2004-positive nuclei that undergo INM to divide in the ONL in retinal explants (top row). The position of one apically migrating nucleus and its basally migrating daughter nuclei is indicated by red arrows. Red star indicates nuclear envelope breakdown during mitosis. A – J, bottom row) The same image series as in the top row was oversaturated and cropped to focus on the dividing cells in the ONL. INL, Inner Nuclear Layer; IPL, Inner Plexiform Layer; ONL, Outer Nuclear Layer. Scale bar in A, 10 µm and is the same for B – J. Please click here to view a larger version of this figure.
Figure 4: Analysis of Apical and Basal Migration Velocities. A – E) Maximum yz-projection of a z-stack image series of Tg[gfap:nGFP]mi2004 retinal explants at different timepoints of the timelapse recording acquired by multi-photon microscopy. Using the line tool under the 'manual measurement' function, a horizontal line was placed at the level of the reference cell, indicated by a star. A vertical measurement line was positioned starting at the horizontal line and extending to the basal position of the migrating gfap:nGFP-positive nucleus. The length of the measurement line is given in the white boxes on the images and for readability under the images. L1 = length that daughter cell 1 migrated; L2 = length that daughter cell 2 migrated. F) Distance that the cell (F0) measured in (A – E) migrated apically and that the arising daughter cells D1 and D2 migrated basally in the multiphoton timelapse recording. The red line indicates the measurements for which the apical migration velocity (va) was calculated while the black and grey lines indicate the measurements used to calculate the basal migration velocities (vb) for D1 and D2, respectively. G, H) The distance was plotted against the time in Excel for apical migration before nuclear envelope breakdown (G) and the phase of rapid basal migration for daughter cell D1 (H). Linear regression curves were fitted and the functions are given below the graphs with the slope representing the velocity. INL, Inner Nuclear Layer; IPL, Inner Plexiform layer; ONL, Outer Nuclear Layer. Please click here to view a larger version of this figure.
Tg[gfap:EGFP]nt11 | Tg[rho:Eco.NfsB-EGFP]nt19 | |||
laser power | gain | laser power | gain | |
Top (rod photoreceptor) | 13 | 126 | 3.5 | 118 |
Middle (Müller glia) | 10 | 126 | 2.8 | 118 |
Bottom (GCL) | 8 | 126 | 2.1 | 118 |
Table 1: Laser and Gain Levels Used for Z-Intensity Corrections at the Different Planes for Experiments Displayed in Figures 2 – 4.
Movie 1: Live-cell Imaging of Retinal Explants by Multiphoton Microscopy. (Right click to download).
Studies investigating the mechanisms governing regeneration of the damaged adult zebrafish retina predominantly used immunocytochemical methods5,25,26,27,28,29,30. Establishing conditions to culture retinal explants and to perform live-cell imaging on phenomena, such as INM, provide us a technique to obtain in depth spatial and temporal information. This technique allows determining the migration velocities, the timing and position of nuclear envelope breakdown during prophase of mitosis and the length and position of cell division. Moreover, it is possible to establish the division plane and the fate of the arising daughter cells in regard to their subsequent location. Ultimately, this powerful approach will determine whether Müller glia and neuronal progenitor cells behave differently in regard to INM during retinal regeneration. The use of transgenic zebrafish lines that identify proliferating cells in the regenerating retina at distinct stages of the regeneration response will aid deciphering differential behavior6. In case of the multiphoton microscope used here, GFP reporter zebrafish lines are preferred as excitation of Red Fluorescent Protein (RFP) is not very efficient; however, other multiphoton systems may allow efficient excitation of RFP or equivalent fluorophores.
One of the most critical steps in the retinal isolation procedure is mounting of the retina. Retinas have to be mounted as flat as possible for the multiphoton light to be able to pass to the deeper z-levels of the ONL. Curving of the retina especially in the marginal region, residual vitreous, and/or accumulation of agarose under the retinal culture, which is used to immobilize the tissue, most commonly introduce extra space between the cover slip and the retinal culture. In addition, increased laser power and gain have to be used to acquire images if the retina is not flat and this will consequently cause increased photobleaching and reduced viability of the retinal culture. Incorrect mounting often also results in poorer image quality due to reduced light penetration and will affect the ability to measure the distances that nuclei had migrated and therefore the calculation of migration velocities.
The velocities of apical migration before nuclear envelope breakdown and of basal migration can be reliably determined in an image series from Tg[gfap:nGFP]mi2004 zebrafish retinal explants. However, it is currently not possible to determine the velocity of apical migration of the chromatin after nuclear envelope breakdown in this transgenic zebrafish line as the GFP re-distributes throughout the entire cytoplasm. Labeling of retinal explants with the nuclear dye Hoechst resulted in dim uptake into Müller glia nuclei that required the change in wavelength to 830 nm (Lahne & Hyde, unpublished data), which affected the viability of the tissue and caused stalling of the cell cycle (Lahne & Hyde, unpublished data). During retinal development, Tg[h2afva:h2afva-GFP]kca6 zebrafish that express GFP fused to histone 2 have been successfully used to monitor INM and determine migration velocities at the different stages of the cell cycle12,31. In the future, retinal explants from Tg[h2afva:h2afva-GFP]kca6 zebrafish will also enable the visualization of chromatin throughout the cell cycle and will allow the analysis of the apical migration velocity after nuclear membrane breakdown in the adult regenerating zebrafish retina.
Having established the conditions to monitor INM by live-cell imaging in retinal explants from light-damaged adult zebrafish and the corresponding analysis of velocities will form the basis to investigate the mechanisms governing INM. Some studies began examining the mechanisms of INM in the adult regenerating retina using immunocytochemistry to determine the position of mitotic phospho-histone 3-positive nuclei6,7. However, interfering with signaling pathways may not render the position of mitosis, but might affect other parameters such as velocity, timing of mitosis and division that would not be possible/very difficult to discern by immunocytochemistry. Previously, it was shown that phospho-histone 3-positive mitotic nuclei mislocalized to more basal positions in the developing retina in dynactin mutants and morphants11. However, subsequent live-cell imaging revealed that nuclear migration prior to cell division was delayed in dynactin-compromised cells, while an increased apical migration velocity enabled nuclei to reach and to undergo cell division at the apical surface11,12. This example exemplifies the power of live-cell imaging. Similarly, when unraveling the mechanisms that facilitate INM in the adult regenerating zebrafish retina, live-cell imaging studies will complement, and in various instances will be advantageous over, immunocytochemical approaches.
As discussed above, live-cell imaging offers many advantages over immunohistochemical/static methods; however, it has to be kept in mind that retinal explants are an ex vivo model. As such, damage incurred during the isolation procedure and/or culture conditions might affect cellular processes. In addition, the imaging procedure itself may exert toxic effects that may influence cellular behavior23,32. While there are disadvantages to live-cell imaging of retinal cultures, it is currently our best method to obtain dynamic information of INM. Importantly, the live-cell imaging procedure of retinal explants will be applicable to other biological questions during retinal regeneration. Based on immunocytochemical data, it was previously suggested that Müller glia phagocytose dying photoreceptors/debris following light-induced photoreceptor damage33. Adjusting parameters to image this process live will verify if phagocytosis of dying photoreceptors occurs in the regenerating zebrafish retina and can be used to study the underlying mechanisms. Having shown that images can be acquired at the level of rod nuclei and rod inner segments in Tg[rho:Eco.NfsB-EGFP]nt19 zebrafish, it should be feasible to adjust the conditions to image photoreceptor phagocytosis. Similarly, knowledge is limited regarding the dynamic behavior of microglia and the mechanisms governing their function in the degenerating and regenerating retina34,35. Exploiting microglia-specific transgenic zebrafish in conjunction with live-cell imaging will also increase our understanding of the function of microglia in the adult regenerating zebrafish retina 36, 37. To summarize, live-cell imaging of retinal explants is a powerful tool to gain dynamic information of cellular processes and to determine the behavior and function of different cell types in the regenerating retina.
The authors have nothing to disclose.
We appreciate the support provided by William Archer and the Notre Dame Integrated Imaging Facility. Special thanks are directed to the Freimann Life Sciences technicians for their continuous help and their care and husbandry of the zebrafish. This study was supported by grants from the National Eye Institute of NIH to DRH (R01-EY018417, R01-EY024519) and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN.
Dumont forceps size #5 | World precision instruments | 14098 | |
Dumont forceps size #5, 45° angle | World precision instruments | 14101 | |
McPherson-Vannas scissors | World precision instruments | 501233 | |
Fluordishes | World precision instruments | FD35-100 | |
Stereomicroscope | Nikon | SMZ-1B | similar type of dissection stereomicroscope will work |
Biological Safety Cabinet class type A2 | Labconco | equivalent type will work | |
tissue culture incubator | Thermoscientific | HEPA-class 100 | equivalent type will work |
Sylvania fluorescent lamps OSFP5835HOECO | Bulbtronics | 31850 | |
0.2 µm pore-size Acrodisc syringe filter | VWR | 4192 | |
10 ml Luer-lok syringe | VWR | BD309604 | |
60 ml Luer-lok syringe | VWR | BD309653 | |
NaHCO3 | FischerScientific | S233-500 | |
CaCl2 | ThermoScientific | C79-500 | |
MgCl2 | EMD Millipore | 5980 | |
HBSS w/o Ca2+/Mg2+, w/o phenol red, Gibco | ThermoScientific | 14175-095 | |
MEM w/o phenol red, Gibco | ThermoScientific | 5100-038 | |
Horse serum, heat-inactivated | ThermoScientific | 26050-070 | |
penicillin/streptomycin | VWR | 16777-164 | |
Ultrapure low melting point agarose | ThermoScientific | 16520-100 | |
ethanol, absolute | ThermoScientific | BP2818-4 | |
2-phenoxyethanol | Sigma | 77699 | |
Corning Cell-Tak cell and tissue adhesive | VWR | 354240 | |
refractive index liquid | Cargille Lab | 1803Y | |
Nikon A1 multiphoton microscope equipped with a MaiTai infrared laser | Nikon | equivalent system will work | |
40x Apo long-distance water immersion objective (N.A. 1.15) | |||
environmental chamber equipped with insert for 35 mm petridishes | Okolab | equivalent system will work | |
NIS analysis software | Nikon |