Summary

斑马鱼高血糖的急性和慢性模型:评估高血糖对神经发生的影响和放射性标记的分子的生物分布的方法

Published: June 26, 2017
doi:

Summary

这项工作描述了在斑马鱼中建立急性和慢性高血糖模型的方法。目的是调查高血糖对生理过程的影响,如组成型和损伤诱导的神经发生。这项工作还突出了使用斑马鱼跟踪放射性标记的分子(这里,[ 18 F] -FDG)使用PET / CT。

Abstract

高血糖是导致心血管和脑功能障碍的主要健康问题。例如,它与中风后增加的神经系统问题相关,并且显示损害神经源性过程。有趣的是,成年斑马鱼已经成为模拟高血糖/糖尿病并调查组成型和再生神经发生的相关和有用的模型。这项工作提供了开发高血糖斑马鱼模型的方法,以探讨在稳态和脑修复条件下高血糖对脑细胞增殖的影响。使用腹膜内注射D-葡萄糖(2.5g / kg体重)到成年斑马鱼中建立急性高血糖。通过将成人斑马鱼浸入含有水的D-葡萄糖(111mM)中14天来诱导慢性高血糖。对于这些不同的方法描述血糖水平测量。调查高血糖对组成型a的影响的方法通过描述端脑的机械损伤,解剖脑,石蜡包埋和切片切片,并进行免疫组织化学程序,进行再生神经发生。最后,还描述了使用斑马鱼作为研究放射性标记分子的生物分布的相关模型的方法(这里,[ 18 F] -FDG)使用PET / CT。

Introduction

高血糖定义为血糖过高。尽管可以反映急性压力的情况,但高血糖也是常常导致糖尿病诊断,糖尿病,胰岛素分泌和/或抵抗的慢性障碍的病症。 2016年全球糖尿病患者人数达到4.22亿,每年有150万人死于该病,成为重大的健康问题1 。事实上,不受控制的糖尿病导致影响心血管系统,肾脏和周围和中枢神经系统的几种生理学障碍。

有趣的是,急性和慢性高血糖症可能会改变认知功能,并有助于痴呆和抑郁症2,3,4,5,6。另外,病人入院高血糖与缺血性卒中7,8,9,10,11之间的功能,神经和生存结果较差有关。还显示高血糖/糖尿病影响成人神经发生,一种导致新神经元产生的过程,通过影响神经干细胞活性和神经元分化,迁移和存活2,12

与哺乳动物相比,硬骨鱼如斑马鱼在整个大脑中显示出强烈的神经源性活动,并且在成年期13,14,15,16期间表现出突出的脑修复能力。值得注意的是,由于neu的持续存在,这种能力是可能的ral干/祖细胞,包括放射状胶质细胞和神经母细胞17,18,19 。此外,斑马鱼近来已成为研究代谢紊乱的典范,包括肥胖和高血糖/糖尿病20,21,22

虽然斑马鱼是一个公认的高血糖和神经发生模型,但很少有研究调查了高血糖对脑内稳态和认知功能的影响12,23。为了确定高血糖对组成型和损伤诱导的脑细胞增殖的影响,通过腹膜内注射D-葡萄糖产生急性高血糖模型。此外,通过将鱼浸入补充水的水中再现慢性高血糖模型D-葡萄糖12 。斑马鱼在研究中表现出很多优势。它们在开发的第一阶段便宜,易于提高和透明,并且其基因组已被测序。在这项工作的背景下,他们还展示了几个额外的优点:(1)他们与人类共享类似的生理过程,使其成为生物医学研究的关键工具; (2)鉴于其广泛而强的神经源性活性,它们可以快速调查高血糖对脑内稳态和神经发生的影响;和(3)它们是替代模型,允许减少研究中使用的哺乳动物的数量。最后,斑马鱼可用作测试放射性标记分子和潜在治疗剂使用PET / CT的生物分布的模型。

以下程序的总体目标是视觉记录如何建立斑马鱼急性和慢性高血糖模型,使用zeb在高血糖条件下评估脑重塑,并使用PET / CT监测放射性标记的分子(这里为[ 18 F] -FDG)。

Protocol

将成年野生型斑马鱼( Danio rerio )保持在标准光周期(14/10h光/暗)和温度(28℃)条件下。所有实验均按照法国和欧洲共同体动物研究指南(86/609 / EEC和2010/63 / EU)进行,并经当地伦理委员会批准进行动物实验。 1.建立斑马鱼急性高血糖模型通过将400mg三卡因粉末溶解在97.9mL水和2.1mL 1M Tris / HCl缓冲液(pH9)中来制备三卡因(MS-222)的储备溶液。将pH调节至7,并…

Representative Results

使用本文所述的方法,在成年斑马鱼上进行腹膜内注射D-葡萄糖(2.5g / kg体重),并且在注射后1.5小时导致血糖水平的显着增加( 图1A )。注射后24小时,D-葡萄糖和PBS注射的鱼12之间的血糖水平相似。对于慢性治疗,将斑马鱼浸入D-葡萄糖水(111mM)中,并在其14天治疗结束时变成高血糖( 图1B ),如前所述<su…

Discussion

这项工作描述了在斑马鱼中建立急性和慢性高血糖模型的各种方法。这些程序的主要优点是:(1)允许减少用于研究的哺乳动物数量,(2)易于建立和快速实施,(3)它们是经济的。因此,这些模型允许调查高血糖对大量动物的影响,以研究其对不同生理过程的影响,包括动脉粥样硬化血栓形成,心血管功能障碍,视网膜病变,血脑屏障渗漏以及组成型和再生性神经发生。这项工作描述了如何?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们非常感谢LaRéunion大学的杜蕾斯大学(DUN)编辑视频(特别是Jean-FrançoisFévrier,Eric Esnault和Sylvain Ducasse),Lynda-Rose Mottagan为配音,Mary Osborne-Pellegrin进行校对讲话和CYROI平台。这项工作得到了LaRéunion大学(BonusQualitéRecherche,Dispositifs incitatifs),ConseilRégionalde LaRéunion,欧盟(CPER / FEDER)和Philancia协会的资助。 ACD是LaRéunion大学(Contrat博士)德国国立教育学院获得奖学金的获得者。

Materials

1mL Luer-Lok Syringe BD, USA 309628
4',6'-diamidino-2-phenylindole (DAPI) Sigma-Aldrich, Germany D8417
7 mL bijou container plain lab Dutscher, France 080171
D-glucose Sigma-Aldrich, Germany 67021
Digital camera Life Sciences, Japan Hamamatsu ORCA-ER
Disposable base molds  Simport, Canada M475-2
Donkey anti-rabbit Alexa fluor 488 Life Technologies, USA A21206
Embedding center Thermo Scientific, USA Shandon Histocentre 3
Fluorescence microscope Nikon, Japan Eclipse 80i
Fluorodeoxyglucose (18F-FDG) Cyclotron, France
Glucometer test strip LifeScan, France One-Touch 143 Ultra
Goat anti-mouse Alexa fluor 594 Life Technologies, USA A11005
In-Vivo Imaging System TriFoil Imaging, Canada Triumph Trimodality 
Microtome Thermo Scientific, USA Microm HM 355 S
Monoclonal mouse anti-PCNA DAKO, USA clone PC10
Paraformaldehyde (PFA) Sigma-Aldrich, Germany P6148-500G
Polyclonal rabbit anti-GFAP DAKO, USA Z033429
Slide drying bench Electrothermal, USA MH6616
Sodium chloride Sigma-Aldrich, Germany S9888
Sodium citrate trisodium salt dehydrate  Prolabo, France 27833.294
Sterile needle BD Microlance 3 30 G 1/2 ; 0.3 mm x 13 mm
Student Dumont #5 Forceps Fine Science Tools 91150-20
Student surgical scissors Fine Science Tools 91400-14
Superfros Plus Gold Slides Thermo Scientific, USA FT4981GLPLUS
Surgical microscope Leica, France M320-F12
Tissue embedding cassettes Simport, Canada M490-10
Tissue embedding medium LeicaBiosystems, USA 39602004
Toluene Sigma-Aldrich, Germany 244511
Tricaine MS-222 Sigma-Aldrich, Germany A5040
Triton X100 Sigma-Aldrich, Germany X100-500 mL
Vectashield medium  Vector Laboratories, USA H-1000
Xylene Sigma-Aldrich, Germany 534056
Fish Strain AB
Saline phosphate buffer (10X PBS) pH 7.4 (for 1 liter) For preparing 10X PBS, add the following  salts and complete to 1 liter with distilled water
Potassium chloride (MM : 74.55 g/mol): 2.00 g Sigma-Aldrich, Germany 746436
Potassium phosphate monobasic (MM: 136,09 g/mol): 2.40g Sigma-Aldrich, Germany 795488
Sodium chloride (MM : 58.44 g/mol): 80.00 g  Sigma-Aldrich, Germany S9888
Sodium phosphate dibasic (MM: 141,96 g): 14,40 g Sigma-Aldrich, Germany 795410

References

  1. Ho, N., Sommers, M. S., Lucki, I. Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev. 37 (8), 1346-1362 (2013).
  2. Cukierman, T., Gerstein, H. C., Williamson, J. D. Cognitive decline and dementia in diabetes–systematic overview of prospective observational studies. Diabetologia. 48 (12), 2460-2469 (2005).
  3. Gaudieri, P. A., Chen, R., Greer, T. F., Holmes, C. S. Cognitive function in children with type 1 diabetes: a meta-analysis. Diabetes Care. 31 (9), 1892-1897 (2008).
  4. Brismar, T., et al. Predictors of cognitive impairment in type 1 diabetes. Psychoneuroendocrinology. 32 (8-10), 1041-1051 (2007).
  5. Ojo, O., Brooke, J. Evaluating the Association between Diabetes, Cognitive Decline and Dementia. Int J Environ Res Public Health. 12 (7), 8281-8294 (2015).
  6. Capes, S. E., Hunt, D., Malmberg, K., Pathak, P., Gerstein, H. C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 32 (10), 2426-2432 (2001).
  7. Stead, L. G., et al. Hyperglycemia as an independent predictor of worse outcome in non-diabetic patients presenting with acute ischemic stroke. Neurocrit Care. 10 (2), 181-186 (2009).
  8. Kagansky, N., Levy, S., Knobler, H. The role of hyperglycemia in acute stroke. Arch Neurol. 58 (8), 1209-1212 (2001).
  9. Gilmore, R. M., Stead, L. G. The role of hyperglycemia in acute ischemic stroke. Neurocrit Care. 5 (2), 153-158 (2006).
  10. Desilles, J. P., et al. Diabetes mellitus, admission glucose, and outcomes after stroke thrombolysis: a registry and systematic review. Stroke. 44 (7), 1915-1923 (2013).
  11. Dorsemans, A. C., et al. Impaired constitutive and regenerative neurogenesis in adult hyperglycemic zebrafish. J Comp Neurol. , (2016).
  12. Schmidt, R., Strähle, U., Scholpp, S. Neurogenesis in zebrafish – from embryo to adult. Neural Dev. 8, 3 (2013).
  13. Kizil, C., Kaslin, J., Kroehne, V., Brand, M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol. 72 (3), 429-461 (2012).
  14. Grandel, H., Brand, M. Comparative aspects of adult neural stem cell activity in vertebrates. Dev Genes Evol. 223 (1-2), 131-147 (2013).
  15. Lindsey, B. W., Tropepe, V. A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol. 80 (6), 281-307 (2006).
  16. März, M., et al. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia. 58 (7), 870-888 (2010).
  17. Chapouton, P., Jagasia, R., Bally-Cuif, L. Adult neurogenesis in non-mammalian vertebrates. Bioessays. 29 (8), 745-757 (2007).
  18. Lindsey, B. W., Darabie, A., Tropepe, V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J Comp Neurol. 520 (10), 2275-2316 (2012).
  19. Sarras, M. P., Intine, R. V. Use of Zebrafish as a Disease Model Provides a Unique Window For Understanding the Molecular Basis of Diabetic Metabolic Memory. Zebrafish. , 2611-2619 (2012).
  20. Oka, T., et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010).
  21. Capiotti, K. M., et al. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp Biochem Physiol B Biochem Mol Biol. 171, 58-65 (2014).
  22. Capiotti, K. M., et al. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behav Brain Res. 274, 319-325 (2014).
  23. Schmidt, R., Beil, T., Strähle, U., Rastegar, S. Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp. (90), e51753 (2014).
  24. Diotel, N., et al. Effects of estradiol in adult neurogenesis and brain repair in zebrafish. Horm Behav. 63 (2), 193-207 (2013).
  25. Rodriguez Viales, R., et al. The helix-loop-helix protein id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon. Stem Cells. 33 (3), 892-903 (2015).
  26. Kaslin, J., Ganz, J., Brand, M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci. 363 (1489), 101-122 (2008).
  27. Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., Brand, M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development. 138 (22), 4831-4841 (2011).
  28. Alunni, A., Bally-Cuif, L. A comparative view of regenerative neurogenesis in vertebrates. Development. 143 (5), 741-753 (2016).
  29. März, M., Schmidt, R., Rastegar, S., Strähle, U. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn. 240 (9), 2221-2231 (2011).
  30. Wullimann, M., Rupp, B., Reichert, H. . Neuroanatomy of the zebrafish brain: A topological atlas. , 1-144 (1996).
  31. Pellegrini, E., et al. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol. 501 (1), 150-167 (2007).
  32. Zupanc, G. K., Hinsch, K., Gage, F. H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol. 488 (3), 290-319 (2005).
  33. Sarras, M. P., Intine, R. V. Use of Zebrafish as a Disease Model Provides a Unique Window For Understanding the Molecular Basis of Diabetic Metabolic Memory. iConcept Press. , 2611-2619 (2013).
  34. Connaughton, V. P., Baker, C., Fonde, L., Gerardi, E., Slack, C. Alternate Immersion in an External Glucose Solution Differentially Affects Blood Sugar Values in Older Versus Younger Zebrafish Adults. Zebrafish. , (2016).
  35. Prasad, S., Sajja, R. K., Naik, P., Cucullo, L. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. J Pharmacovigil. 2 (2), 125 (2014).

Play Video

Cite This Article
Dorsemans, A., Lefebvre d’Hellencourt, C., Ait-Arsa, I., Jestin, E., Meilhac, O., Diotel, N. Acute and Chronic Models of Hyperglycemia in Zebrafish: A Method to Assess the Impact of Hyperglycemia on Neurogenesis and the Biodistribution of Radiolabeled Molecules. J. Vis. Exp. (124), e55203, doi:10.3791/55203 (2017).

View Video