Summary

溶剂粘接的PMMA的制备和COP微流体装置

Published: January 17, 2017
doi:

Summary

溶剂粘接是制造高品质债券热塑性微流体装置的简单和通用的方法。我们描述了一种协议来实现在PMMA中强,光学透明的键和COP的微流体装置能够保护微特征的详细信息,通过压力,温度,适当的溶剂中,和装置的几何形状的恰当组合。

Abstract

热塑性微流体装置提供优于那些从硅氧烷弹性体作出了许多优点,但粘结程序必须为每个感兴趣的热塑性被开发。溶剂粘合是可用于从各种塑料制造设备的简单和通用的方法。在两个器件层之间添加适当的溶剂中结合,并且热和压力被施加到该装置,以促进粘合。通过使用溶剂,塑料,热和压力的适当组合,该设备可以具有高质量键被密封,其特征为具有高的粘结范围,粘合强度,光学透明度,随着时间的推移的耐用性,以及低变形或损坏微特征几何。我们描述了从两个流行的热塑性塑料,聚(甲基丙烯酸甲酯)(PMMA),以及环烯烃聚合物(COP),以及各种各样的方法制备来表征所得键的质量接合装置,和策略的程序到特鲁bleshoot低质量债券。这些方法可用于开发其他塑料溶剂体系新溶剂粘合协议。

Introduction

微流体已经出现在过去的二十年,以及适合在微尺度1学习化学和物理,以及不断增长的承诺生物学研究2显著贡献技术 4。大多数微流体装置的历来由聚(二甲基硅氧烷)制成(PDMS),硅氧烷弹性体,很容易使用,价格便宜,并提供了高品质的特性复制5。然而,PDMS已充分证明的缺点,并与大批量制造不相容处理6,7,因此,出现了对制造,因为它们的大规模生产,因此商业化潜力的热塑性材料的微流体装置,不断增长的趋势。

一来更广泛地采用塑料微细加工的主要障碍已经实现塑料器件的方便,高品质的结合。目前的战略运用Ťhermal,粘合剂和溶剂的结合技术,但许多患有显著挑战。热粘接增加自发荧光8和经常变形的微通道的几何形状9 11,而粘合剂技术需要模具,仔细对准,并最终离开暴露于微通道10中的粘合剂的厚度。溶剂粘接是有吸引力的,由于它的简单性,可调性,成本低10,12 14。尤其是,它的可调性使得优化各种塑料,它可以产生一致的,高质量接合,最大限度地减少微特征14的变形。

期间溶剂粘合,溶剂暴露增加聚合物链的塑料,这使得横跨接合界面链的相互扩散的表面附近的流动性。这使得通过扩散链的机械联锁纠缠,并导致AP物质环境的债券10。热粘接工作在类似的方式,但单独依赖于升高的温度下,以增加链移动性。因此,热的方法需要的温度附近或该聚合物的玻璃化转变温度以上,而使用溶剂可显著减少所需用于粘结的温度,从而降低不必要的变形。

我们提供贴合PMMA和COP设备的特定协议。然而,该协议和方法描述了热塑性微流体装置的溶剂粘合,可以为其它塑料材料,溶剂和可用的设备进行定制的简单,通用的方法。我们描述了评估质量保证金多种方法( 例如 ,债券保险,粘结强度,粘结耐久性和微特征几何变形),并提供解决这些共同的挑战排除故障的方法。

Protocol

注意,以下所有描述的步骤已被开发,并在非洁净室环境中进行。溶剂粘接的步骤当然可以在洁净室中进行,如果有的话,但是这不是必需的。 1.热塑性微流体器件层的制备设计和选择的热塑性制造微流体装置的层,使用适当的制造方法( 例如 ,微细铣削15,压花16 – 18,注射成型)。 目测设备层,以确保边缘“干净”?…

Representative Results

一般溶剂粘合过程的示意图示于图1。评估债券质量最简单方法是目视检查覆盖债券,因为债券覆盖较差是无粘结胶区域很容易看到,并且表示弱粘接。这样的区域典型地是邻近自由边缘( 例如 ,外围设备的,或者接近打开的端口或微通道),并且还可以经常出现周围的污物或灰尘的任何颗粒在粘合界面。由于弱粘结较差粘合覆盖在协议的开发阶段,?…

Discussion

潜在的结合策略的可行性取决于可用的设备。虽然电磁炉是比较普遍和自由重量可以廉价购买,高压策略,将需要使用热压机的。例如,我们的最佳结合PMMA配方需要高压用乙醇( 见表1)键,所需要的压力是无法达到使用自由重量典型的设备尺寸。因此,如果只有一个加热板和重量都可用,PMMA可以代替使用不同的溶剂(在水中75%丙酮)接合。另外,使用需要一个通风柜还可能限制?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们承认从加拿大自然科学和(NSERC,#436117-2013)工程研究理事会,癌症研究学会(CRS,#20172),骨髓瘤加拿大和大挑战加拿大的资金支持。

Materials

COP Zeonor 604Z1020R080 20 kg COP Pellets – 1020R. Multiple suppliers can be used, but may affect bonding characteristics.
PMMA McMaster Carr 8560K173 1.5 mm sheet thickness for our typical applications. Multiple suppliers can be used, but may affect bonding characteristics.
Cyclohexane Sigma-Aldrich 227048 Cyclohexane, anhydrous, 99.5%. Multiple suppliers can be used. Toxic, requires fumehood.
Ethanol Sigma-Aldrich 24102 Ethanol, absolute, ≥99.8% (GC). Multiple suppliers can be used.
Acetone Sigma-Aldrich 179124 Acetone, ACS reagent, ≥99.5%. Multiple suppliers can be used.
2-Propanol Sigma-Aldrich 278475 2-Propanol, anhydrous, 99.5%. Multiple suppliers can be used.
Hot plate(s) Torrey Pines Scientific HP60 Fully programmable digital hotplate. Multiple suppliers can be used.
Free weights Cap Barbell RPG#2 Standard cast iron plate. Multiple suppliers and different weights can be used.
Heated press Carver Auto CH Auto series heated hydraulic press. Multiple suppliers can be used. A press that fits in a fumehood would allow the most flexibility (this model does not).
CNC Milling Machine Tormach PCNC 770 3 Axis CNC mill. Multiple suppliers can be used.
Endmills Various Various Required sizes depend on designs. Multiple suppliers can be used.

References

  1. Beebe, D. J., Mensing, G. A., Walker, G. M. Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering. 4, 261-286 (2002).
  2. Situma, C., Hashimoto, M., Soper, S. a. Merging microfluidics with microarray-based bioassays. Biomolecular Engineering. 23 (5), 213-231 (2006).
  3. Paguirigan, A. L., Beebe, D. J. Microfluidics meet cell biology: Bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays. 30 (9), 811-821 (2008).
  4. Young, E. W. K., Beebe, D. J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chemical Society Reviews. 39 (3), 1036-1048 (2010).
  5. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., Whitesides, G. M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry. 70 (23), 4974-4984 (1998).
  6. Berthier, E., Young, E. W. K., Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on a Chip. 12 (7), 1224-1237 (2012).
  7. Sackmann, E. K., Fulton, A. L., Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature. 507 (7491), 181-189 (2014).
  8. Young, E. W. K., Berthier, E., Beebe, D. J. Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices. Analytical Chemistry. 85 (1), 44-49 (2013).
  9. Wallow, T. I., Morales, A. M., et al. Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab on a Chip. 7 (12), 1825-1831 (2007).
  10. Tsao, C. W., DeVoe, D. L. Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics. 6 (1), 1-16 (2009).
  11. Young, E. W. K., Berthier, E., et al. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Analytical Chemistry. 83 (4), 1408-1417 (2011).
  12. Truckenmüller, R., Henzi, P., Herrmann, D., Saile, V., Schomburg, W. K. Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures. Microsystem Technologies. 10 (5), 372-374 (2004).
  13. Tsao, C. W., Hromada, L., Liu, J., Kumar, P., DeVoe, D. L. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab on a Chip. 7 (4), 499-505 (2007).
  14. Wan, A. M. D., Sadri, A., Young, E. W. K. Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab on a Chip. 15 (18), 3785-3792 (2015).
  15. Guckenberger, D. J., de Groot, T. E., Wan, A. M. D., Beebe, D. J., Young, E. W. K. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip. 15 (11), 2364-2378 (2015).
  16. Cameron, N. S., Roberge, H., Veres, T., Jakeway, S. C., John Crabtree, H. High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction. Lab on a Chip. 6 (7), 936 (2006).
  17. Yang, S., Devoe, D. L. Microfluidic device fabrication by thermoplastic hot-embossing. Methods in Molecular Biology. 949, 115-123 (2013).
  18. Konstantinou, D., Shirazi, A., Sadri, A., Young, E. W. K. Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices. Sensors and Actuators B: Chemical. 234, 209-221 (2016).
  19. Maszara, W. P., Goetz, G., Caviglia, A., McKitterick, J. B. Bonding of silicon wafers for silicon-on-insulator. Journal of Applied Physics. 64 (10), 4943 (1988).
  20. Bhattacharyya, A., Klapperich, C. M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab on a Chip. 7 (7), 876-882 (2007).

Play Video

Cite This Article
Wan, A. M. D., Moore, T. A., Young, E. W. K. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices. J. Vis. Exp. (119), e55175, doi:10.3791/55175 (2017).

View Video