Here, we present human cell culture protocols to analyze translation initiation factors that bind the 5′ cap of mRNA during physiological oxygen conditions. This method utilizes an Agarose-linked m7GTP cap analog and is suitable to investigate cap-binding factors and their interacting partners.
Translational control is a focal point of gene regulation, especially during periods of cellular stress. Cap-dependent translation via the eIF4F complex is by far the most common pathway to initiate protein synthesis in eukaryotic cells, but stress-specific variations of this complex are now emerging. Purifying cap-binding proteins with an affinity resin composed of Agarose-linked m7GTP (a 5′ mRNA cap analog) is a useful tool to identify factors involved in the regulation of translation initiation. Hypoxia (low oxygen) is a cellular stress encountered during fetal development and tumor progression, and is highly dependent on translation regulation. Furthermore, it was recently reported that human adult organs have a lower oxygen content (physioxia 1-9% oxygen) that is closer to hypoxia than the ambient air where cells are routinely cultured. With the ongoing characterization of a hypoxic eIF4F complex (eIF4FH), there is increasing interest in understanding oxygen-dependent translation initiation through the 5′ mRNA cap. We have recently developed a human cell culture method to analyze cap-binding proteins that are regulated by oxygen availability. This protocol emphasizes that cell culture and lysis be performed in a hypoxia workstation to eliminate exposure to oxygen. Cells must be incubated for at least 24 hr for the liquid media to equilibrate with the atmosphere within the workstation. To avoid this limitation, pre-conditioned media (de-oxygenated) can be added to cells if shorter time points are required. Certain cap-binding proteins require interactions with a second base or can hydrolyze the m7GTP, therefore some cap interactors may be missed in the purification process. Agarose-linked to enzymatically resistant cap analogs may be substituted in this protocol. This method allows the user to identify novel oxygen-regulated translation factors involved in cap-dependent translation.
Translational Steuerung zeichnet sich als ein ebenso wichtiger Schritt , um die Transkriptionsregulation in der Genexpression, insbesondere in Zeiten der zellulären Stress 1. Ein Schwerpunkt der Translationskontrolle ist bei der geschwindigkeitsbestimmende Schritt der Einleitung , wo die ersten Schritte der Proteinsynthese , die Bindung des eukaryotische Initiationsfaktor 4E (eIF4E) an die 7-Methylguanosin (m 7 GTP) 5' – Cap von mRNAs beinhalten 2 . eIF4E ist Teil eines trimeren Komplex namens eIF4F die eIF4A, eine RNA – Helikase und eIF4G, ein Gerüstprotein , die für die Rekrutierung anderer Übersetzungsfaktoren und die 40S – Ribosoms 3 umfasst. Unter normalen physiologischen Bedingungen, die überwiegende Mehrheit der mRNAs über einen CAP-abhängigen Mechanismus übersetzt, aber unter Perioden der zellulären Stress etwa 10% der humanen mRNAs enthalten 5 'UTR , die cap-unabhängige Translation Initiation 1,4 ermöglichen kann. Cap-abhängige Translation ist historisch Synonymous mit eIF4F jedoch stressspezifische Varianten von eIF4F haben ein Trend – Thema geworden 5-8.
Verschiedene Zellspannungen verursachen eIF4E Aktivität über die Säugetier-Ziel von Rapamycin-Komplex 1 (mTORC1) verdrängt werden. Diese Kinase wird unter Stress beeinträchtigt, die eines seiner Ziele in der erhöhten Aktivität führt, die 4E-Bindungsprotein (4E-BP). Nicht-phosphoryliert 4E-BP bindet an eIF4E und blockiert ihre Fähigkeit , mit eIF4G wodurch die Unterdrückung von Cap-abhängige Translation 9,10 zu interagieren. Interessanterweise hat ein Homolog von eIF4E namens eIF4E2 (oder 4EHP) eine viel geringere Affinität für 4E-BP 11, vielleicht so dass es Stress-vermittelten Repression zu entziehen. Tatsächlich zunächst als Repressor der Übersetzung charakterisiert aufgrund seiner mangelnden Wechselwirkung mit eIF4G 12 initiiert eIF4E2 Übersetzung von Hunderten von mRNAs , die RNA Hypoxie – Response – Elemente in ihren 3' – UTR 6,13 während des hypoxischen Stress enthalten. Diese Aktivierung is durch Wechselwirkungen mit eIF4G3 erzielte RNA – Bindungsprotein – Motiv 4 und der Hypoxie – induzierbaren Faktor (HIF) 2α einen hypoxischen eIF4F Komplex oder eIF4F H 6,13 zu bilden. Als Repressor unter normalen Bedingungen bindet eIF4E2 mit GIGYF2 und ZNF598 14. Diese Komplexe wurden, teilweise identifiziert durch Agarose-linked m 7 GTP Affinitätsharze. Diese klassische Methode 15 ist im Bereich der Übersetzungsnorm und ist die beste und am häufigsten verwendete Technik cap-Bindungskomplexe in Zug zu isolieren , nach unten und in – vitro – Bindungsassays 16-19. Da der cap-abhängigen Translationsmaschinerie als flexibel und anpassungsfähig mit inter ändernden Teilen Schwellen 6-8,13 Dieses Verfahren ist ein leistungsfähiges Werkzeug , um schnell neue cap-Bindungsproteine in der Stressantwort beteiligt identifizieren. Weiterhin ist in Variationen eIF4F könnte weitreichende Auswirkungen haben, da mehrere eukaryotische Modellsysteme scheinen eine eIF4E2 Homolog für Stressreaktionen zu verwenden, wiewie A. thaliana 20, S. Pombe 21, D. melanogaster 22 und C. elegans 23.
Hinweise darauf , dass Variationen in eIF4F nicht streng auf Stressbedingungen beschränkt, sondern in der normalen Physiologie 24 einbezogen werden. Die Sauerstoffversorgung der Gewebe (in Kapillarenden) oder innerhalb von Geweben (via Mikroelektroden gemessen wird ) variiert von 2-6% im Gehirn 25, 3-12% der Lunge 26, 3,5-6% im Darm 27, 4% in die Leber 28, 7-12% in der Niere 29, 4% in Muskel 30 und 6-7% in dem Knochenmark 31. Zellen und Mitochondrien enthalten weniger als 1,3% Sauerstoff 32. Diese Werte sind sehr viel näher an Hypoxie als die Umgebungsluft, wo Zellen routinemßig kultiviert. Dies legt nahe, dass das, was vorher waren gedacht als Hypoxie-spezifische zelluläre Prozesse in einer physiologischen Umgebung von Bedeutung sein können. Interessanterweise eIF4F und eIF4F H </sup> aktiv an der Translationsinitiations verschiedener Pools oder Klassen von mRNAs in verschiedenen menschlichen Zelllinien teilnehmen zu physiologischen Sauerstoff ausgesetzt oder "physioxia" 24. Niedrige Sauerstoff treibt auch die richtige Entwicklung des Fötus 33 und Zellen haben in der Regel höhere Proliferationsraten, längere Lebensdauer, weniger DNA – Schäden und weniger allgemeine Stressreaktionen in physioxia 34. Daher ist eIF4F H wahrscheinlich ein wichtiger Faktor bei der Expression von ausgewählten Genen unter physiologischen Bedingungen.
Hier bieten wir ein Protokoll zur Kultivierung von Zellen in festen physiologischen Sauerstoffbedingungen oder in einem dynamischen Schwankungsbereich, die wahrscheinlich mehr repräsentativ für Gewebe-Mikroumgebungen ist. Ein Vorteil dieses Verfahrens ist, dass Zellen innerhalb der Hypoxie Workstation lysiert werden. Es ist oft nicht klar, wie der Übergang von hypoxische Zellkultur zu Zellaufschluß wird in anderen Protokollen durchgeführt. Zellen werden oft zunächst von einem kleinen Hypoxie Inkubator entfernt werdenVordergrund – Lyse, aber diese Exposition gegenüber Sauerstoff konnte biochemische Wege beeinflussen , wie die zelluläre Reaktion auf Sauerstoff schnell ist (ein oder zwei Minuten) 35. Bestimmte cap-bindende Proteine erfordern Wechselwirkungen mit einer zweiten Base oder die m 7 GTP hydrolysieren daher einige Kappe Interaktoren können in dem Reinigungsverfahren fehlen. Agarose-gebundenen enzymatisch sicheren Verschluss-Analoga können in diesem Protokoll ersetzt werden. Erforschung der Aktivität und Zusammensetzung der eIF4F H und andere Variationen von eIF4F durch das hier beschriebene Verfahren wird Licht auf die komplizierten Genexpression Maschinerien , die Zellen während der physiologischen Bedingungen oder Stressreaktionen zu nutzen.
Die Analyse der Cap-bindenden Proteinen in menschlichen physiologischen Sauerstoffbedingungen ausgesetzt Zellen können für die Identifizierung von neuen Sauerstoff-regulierten Translationsinitiationsfaktoren ermöglichen. Die Affinität dieser Faktoren für die 5 'Cap der mRNA oder andere cap-assoziierte Proteine können durch die Stärke ihrer Verbindung zu m 7 GTP-gebundenen Agarosekügelchen gemessen werden. Eine Einschränkung dieser Technik ist, dass sie die cap-Bindungspotential von Proteinen nach…
The authors have nothing to disclose.
This work was supported by the Natural Sciences and Engineering Council of Canada and the Ontario Ministry of Research and Innovation.
γ-aminophenyl-m7GTP agarose C10-linked beads | Jena Bioscience | AC-1555 | Agarose-linked m7GTP |
100 mm culture dish | Corning | 877222 | 10-cm culture dish |
150 mm culture dish | Thermofisher | 130183 | 15-cm culture dish |
AEBSF Hydrochloride | ACROS Organics | A0356829 | AEBSF |
Agarose Beads | Jena Bioscience | AC-0015 | Agarose bead control |
Bromophenol Blue | Fisher | BP112-25 | Component of SDS-PAGE loading buffer |
1.5 mL Centrifuge Tubes | FroggaBio | 1210-00S | Used to centrifuge small volumes |
15 mL Conical Centrifuge Tubes | Fisher | 1495970C | Used in culturing primary cells |
Defined trypsin inhibitor | Fisher | R007100 | DTI |
Dithiothreital | Fisher | BP172-25 | DTT |
Epithelial cell medium (complete kit) | ScienCell | 4101 | Includes serum and growth factor supplements) |
Glycerol | Fisher | BP229-1 | Component of SDS-PAGE loading buffer |
100 mM Guanosine 5'-triphosphate, 1 mL | Jena Bioscience | 272076-0251M | GTP |
HCT116 colorectal carcinoma | ATCC | CCL-247 | Human cancer cell line |
Human renal proximal tubular epithelial cells | ATCC | PCS-400-010 | HRPTEC |
Hyclone DMEM/High Glucose | GE Life Sciences | SH30022.01 | Standard media for human cell culture |
Hyclone Penicillin-Streptomycin solution | GE Life Sciences | SV30010 | Antibiotic component of DMEM |
H35 HypOxystation | Hypoxygen | N/A | Hypoxia workstation |
Igepal CA-630 | MP Biomedicals | 2198596 | Detergent component of lysis buffer |
Monopotassium phosphate | Fisher | P288-500 | KH2PO4 |
Potassium chloride | Fisher | P217-500 | KCl |
Magnesium chloride | Fisher | M33-500 | MgCl2 |
Sodium chloride | Fisher | BP358-10 | NaCl |
Sodium fluoride | Fisher | 5299-100 | NaF (phosphatase inhibitor component of lysis buffer) |
Disodium phosphate | Fisher | 5369-500 | Na2HPO4 |
Premium Grade Fetal Bovine Serum | Seradigm | 1500-500 | FBS |
Protease Inhibitor Cocktail (100 x) | Cell Signalling | 58715 | Component of lysis buffer |
Sodium Dodecyl Sulfate | Fisher | BP166-100 | SDS |
Sodium Orthovanadate | Sigma | 56508 | Na3VO4 |
Tris Base | Fisher | BP152-5 | Component of buffers |
0.05% Trypsin-EDTA (1x) | Life Technologies | 2500-067 | Trypsin used to detach adherent cells |