The monocyte monolayer assay (MMA) is an in vitro assay that utilizes isolated primary monocytes obtained from mammalian peripheral whole blood to evaluate Fcγ receptor (FcγR)-mediated phagocytosis.
Although originally developed for predicting transfusion outcomes of serologically incompatible blood, the monocyte monolayer assay (MMA) is a highly versatile in vitro assay that can be modified to examine different aspects of antibody and Fcγ receptor (FcγR)-mediated phagocytosis in both research and clinical settings. The assay utilizes adherent monocytes from peripheral blood mononuclear cells isolated from mammalian whole blood. MMA has been described for use in both human and murine investigations. These monocytes express FcγRs (e.g., FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIA) that are involved in immune responses. The MMA exploits the mechanism of FcγR-mediated interactions, phagocytosis in particular, where antibody-sensitized red blood cells (RBCs) adhere to and/or activate FcγRs and are subsequently phagocytosed by the monocytes. In vivo, primarily tissue macrophages found in the spleen and liver carry out FcγR-mediated phagocytosis of antibody-opsonized RBCs, causing extravascular hemolysis. By evaluating the level of phagocytosis using the MMA, different aspects of the in vivo FcγR-mediated process can be investigated. Some applications of the MMA include predicting the clinical relevance of allo- or autoantibodies in a transfusion setting, assessing candidate drugs that promote or inhibit phagocytosis, and combining the assay with fluorescent microscopy or traditional Western immunoblotting to investigate the downstream signaling effects of FcγR-engaging drugs or antibodies. Some limitations include the laboriousness of this technique, which takes a full day from start to finish, and the requirement of research ethics approval in order to work with mammalian blood. However, with diligence and adequate training, the MMA results can be obtained within a 24-h turnover time.
The monocyte monolayer assay (MMA) is an in vitro assay originally developed to better predict blood transfusion outcomes in patients with auto- or alloantibodies to red blood cells (RBCs)1-5. By assessing the effect of anti-RBC antibodies in mediating Fcγ receptor (FcγR)-mediated phagocytosis using this in vitro assay, it is possible to predict the clinical outcome in vivo. Indeed, the MMA has been used successfully to avoid immune destruction of antibody-bound RBCs, despite the transfusion of serologically incompatible blood5. The typical pre-transfusion procedure for compatibility testing, also termed crossmatching, involves serological methods that include typing the patient’s blood for ABO and Rh antigens and screening for the presence of anti-RBC antibodies in the patient6. Blood matched for ABO/Rh is selected, and if antibodies are present, an attempt to identify them is made so that blood for transfusion can be further selected to avoid these antigens. An ideal crossmatch result occurs when all donor blood is serologically compatible with the patient’s blood, which reduces the risk of post-transfusion hemolysis7. However, this system falls short for the small group of patients who have become alloimmunized upon repeated transfusion or pregnancy. These patients produce alloantibodies against specific RBC antigens. Some produce antibodies to antigens of very high frequency in the general population, and thus become progressively more difficult to crossmatch8,9. Adding to the complexity, not all alloantibodies are clinically significant; in other words, the binding of an alloantibody to RBCs detected by a serology test does not necessarily result in hemolysis when antigen-positive, incompatible blood is transfused. The MMA was originally developed to assess the potential clinical significance of serologically incompatible blood in a transfusion setting1-5.
Since extravascular hemolysis of antibody-bound RBCs is known to be mediated by the mononuclear phagocyte system, primary monocytes/macrophages are utilized in the development of diagnostic assays. The first assay to study the interaction of monocytes, RBCs, and antibodies was published in 1975, but the sub-optimal conditions used led only to rosette formation (the binding of RBCs to the periphery of the monocyte), and no phagocytosis was observed10. Significant modifications to the assay were made by several groups, leading to an assay for which the level of phagocytosis of alloantibody-bound RBCs could be correlated to the clinical outcome of hemolysis1-5. Recently, the optimal storage conditions of clinical samples and further optimization of assay conditions were examined to enhance the utility of a clinical MMA crossmatch using autologous patient samples11.
Three other diagnostic techniques have been employed in addition to the MMA in predicting transfusion outcomes: the 51Cr release test, the rosette test, and the chemiluminescence test (CLT). In the 51Cr release test, the patient is injected with 51Cr-labeled donor RBCs, and the half-life of the labeled RBCs is monitored and is predictive of post-transfusion survival or clearance12,13. As this method uses radioactive materials, it is rarely performed anymore. The rosette test involves mixing and incubating monocytes with RBCs and quantifying the level of rosette formation (with no phagocytosis)14. The clinical significance of antibodies in vivo involves active phagocytosis by macrophages found in the spleen and/or the liver; thus, this method does not provide a relevant readout of phagocytosis. The CLT uses luminol to monitor the oxidative burst during monocyte phagocytosis of RBC, since luminol fluoresces blue when oxidized in the phagosome15. This method is good, but contamination by neutrophils can confound the readout. Parallel comparisons have been made to evaluate the sensitivity, practicality, and reproducibility of the four available methods, and both the CLT and MMA were ranked superior16. However, the CLT has been mainly utilized in assessing hemolytic disease of the fetus and newborn (HDFN), and the assay’s optimal pH of 8.0 might compromise the level of phagocytosis11.
In addition to its diagnostic and clinical utility, the MMA has been modified for other research purposes. Indeed, the MMA can not only serve as a functional assay to address discrepancies between serology and biology, it has also been used to retrospectively investigate the cause of hemolysis after intravenous immunoglobulin (IVIG) therapy17. It has also been used to examine the structure-function of chemical inhibitors of FcγR-mediated phagocytosis18-20 and to study the downstream signaling of FcγR-mediated phagocytosis21. In our laboratory, in addition to using a human MMA, we are developing a murine MMA using primary mouse peripheral blood mononuclear cells (PBMCs) and autologous RBCs. The rationale is to screen antibodies that can induce FcγR-mediated phagocytosis as an intermediate to developing an in vivo autoimmune hemolytic anemia (AIHA) mouse model (unpublished data). The various modifications focus on different aspects of the IgG antibody and FcγR interaction that induce phagocytosis.
MMAは、組織培養および顕微鏡の両方の専門知識を必要とする面倒な手法です。成功を確実にするには、いくつかの重要なステップがあります:単球、単層の1)の生成は、 RBCの2)オプソニン化、および3)マニュアル定量化。単球の単層は、チャンバースライドに非常に強く付着しないので、生理的pHは、アッセイ11を通じて維持されなければならないとPBMCの十分な数が播種されるべきです。接着した細胞を乱す可能性があり、激しいピペッティングは、避けるべきです。一つのアプローチは常に削除して、チャンバーの同じコーナーからソリューションを追加し、動きがゆっくりと着実であることを保証することです。同様に、過剰な赤血球を除去するための最後の洗浄工程の間に、動きがゆっくりと着実にする必要があります。まだ未貪食RBCの大部分を除去しながらこれは、単層に最小限の妨害を保証します。不十分な洗浄は、手動の資格を行い、混入RBCの高いバックグラウンド、につながりますntification難しいです。第二に、R 2、R 2 RBCが十分に貪食制御のための80から120までの平均貪食インデックスを取得するためにオプソニン化する必要があります。この目的の食作用範囲はカウントのしやすさとのバランスを打つと統計分析のための食作用の十分な量を維持する( 例えば、5つ以上の単球は、赤血球を正確に定量化することは困難である貪食しました)。オプソニン作用の程度は、IATによって確認することができ、4+ 3+との間の読み取りが必要です。 R 2、R洗浄の間の過剰な溶解があるとき上清は暗赤色に変わったら、または食作用の有意な減少は、ストレージ内の細胞の老化に起因する実験で観察されたときに2個のRBCは、破棄されるべきです。最後に、顕微鏡を使用して手動定量は、実験室の担当者の間や実験間でカウントを比較する場合は特に、注意が必要です。各ウェルに同じフィールドを調べることによって、または単により多くの細胞を計数することによってより一貫性のある数を得ることができます。経験豊富な技術とトレーニング用スライドの指定されたセットを使用したサイド・バイ・サイドのトレーニングが推奨されます。
MMAの主要な批判は、手動の定量化ステップの主観です。しかし、適切な訓練で、一貫性が異なるカウンタ渡って得ることができます。別の制限は、ヒト試料を扱うデータ変動の源である2 R 2表面抗原の発現レベルを、単球食作用能力およびRにおいて内因性のドナーからドナーの違いです。
他の代替技術は、FcγRを媒介食作用を調べるために利用可能です。市販のキットの大部分は、食作用をモニターするための蛍光出力を利用して( 例えば、生体粒子、pH感受性蛍光タンパク質、またはIgG標識蛍光ラテックスビーズ)。蛍光出力の使用は、より客観的な定量化を提供しますが、1はまた、コンする必要があります可用性、コスト、および蛍光顕微鏡やフローサイトメーターと同様に、市販のキットの際に後続依存の使用に関連するトレーニングサイダー。
最後に、このアッセイは、研究の質問に応じて変更することができます。食作用の薬物阻害をテストする場合、例えば、単球を前処理することができるいずれかまたは薬物およびオプソニン化赤血球( すなわち、競合アッセイ)の両方と共培養しました。異なるサブタイプ、キメラ抗体、または組換え構築物の抗体の下流のシグナル伝達も試験することができます。普遍的抗原ヌル血液24の開発における最近のブレークスルーでは、MMAは、食作用を誘発における低下効果が実際に存在するかどうかを評価するために様々な抗体を用いたこれらの抗原ヌルRBCの初期画面で利用することができます。
The authors have nothing to disclose.
The authors thank the Canadian Blood Services for a Graduate Fellowship Program Award to T.N.T. This research received financial support from the Canadian Blood Services’ Centre for Innovation, funded by the federal government (Health Canada) and the provincial and territorial ministries of health. The views herein do not reflect the views of the federal, provincial, or territorial governments in Canada.
Acid citrate dextrose (ACD) vacutainers | BD | REF364606 | |
RPMI 1640 | Sigma | R8758 | |
HEPES | Bioshop | HEP003.100 | |
Fetal bovine serum | Multicell | 080150 | |
Gentamicin | Gibco | 15710-64 | |
Ficoll-Paque PLUS | GE | 17-1440-03 | https://www.gelifesciences.com/ |
Phosphate buffered saline | Sigma | D8537 | |
8-chamber slides | Lab-Tek-ll | 154534 | |
R2R2 (cDE/cDE) red blood cells | Canadian Blood Services | Commercially available (e.g. http://www.bio-rad.com/en-ca/product/reagent-red-blood-cells) | |
Polyclonal anti-D from human serum | Gamma Biologics | DIN 02247724 | Can be substituted with commercially available monoclonal anti-D or with Rh immune globulin |
100% methanol | Caledon | 6700-1-42 | |
Polyvinyl alcohol resin | Sigma | P8136 | Can be substituted with commercially available mount |
UltraPure glycerine | Invitrogen | 15514-011 | |
Cover slips | VWR | 48366 067 | |
Novaclone anti-IgG | Immucorgamma | 5461023 | Optional for IAT (http://www.fda.gov/downloads/biologicsbloodvaccines/…/ucm081743.pdf) |