Summary

接种<em>冈比亚按蚊</em>珠蚊子诱发和测量黑化免疫反应

Published: January 12, 2017
doi:

Summary

Through inoculation with beads, the described technique enables the stimulation of the mosquito melanization response in the hemolymph circulating system. The amount of melanin covering the beads can be measured after dissection as a measure of the immune response.

Abstract

免疫反应的刺激是无脊椎动物研究的常用工具来检查的有效性和免疫力的机制。这种刺激是基于注射非致病性颗粒的成虫,如颗粒将被免疫系统检测,将诱导产生免疫效应的。在这里,我们专注于在蚊子冈比亚按蚊黑化反应的刺激。黑化反应的结果在外来颗粒和寄生虫与黑色素的暗层封装。为了刺激这个回应,蚊子接种使用微细玻璃管在胸腔珠。然后,24小时后,蚊子解剖检索珠。胎圈的黑化的程度是使用图像分析软件来测量。珠没有寄生虫的致病作用,或它们的容量来逃避或抑制免疫应答。这些注射是measu方式再免疫效果和免疫刺激对其他生活史特征,如孕卵或寿命的影响。这是不完全一样的直接研究宿主 – 寄生虫的相互作用,但它是一个有趣的工具来研究免疫和其进化生态学。

Introduction

昆虫依靠免疫反应,以保护自己免受寄生虫和致病菌1 3,通过他们的角质层或他们的肠上皮细胞4突破口。在蚊子,这些反应是对细菌5,6病毒,线虫丝虫7和疟原虫1,8,9高效。在蚊子,一个关键的免疫应答是外来颗粒与黑色素10的封装 12。 12 此封装可以在肠或血淋巴循环系统10发生。此黑化反应是亲酚的结果级联10 12,并且它可以导致寄生虫死亡或它们的吞噬作用。在成蚊,其中血细胞的细胞的数量是有限的,黑化是体液应答,如针对疟原虫寄生虫或丝虫线虫7。在其他一些昆虫,它直接是围绕寄生虫聚集melanize他们7血细胞的细胞。此外,黑色素也像鸡蛋的生产和表皮伤口愈合7其他几个生理过程是必不可少的。

免疫反应的刺激作为一种工具来研究昆虫干扰的几个农业和公共健康模型系统13 18。它在使用按蚊冈比亚蚊子,在非洲疟疾的主要载体,研究宿主-寄生虫的相互作用14 16,19。这些技术是基于昆虫以检测与它们的模式识别受体(PRR)2寄生虫的能力。蚊子也可以检测其他分子与其生物学如病原体相关分子模式(PAMP)的干扰,或检测由于胶原蛋白和核酸的释放自己的受损细胞。蚊子免疫细胞S,从而作为血细胞用于检测20 23。主免疫信号途径是Imd信号,收费,JAK / STAT 24和核糖核酸干扰(RNAi)25,26。这两种收费和IMD的途径影响黑色素的反应,并与亲酚互动级联10 12。

用于刺激黑色素响应的标准工具是用小珠进入胸腔的血淋巴蚊子的接种。黑色素包封的程度可以然后通过蚊子的解剖检索胎圈后测量19。在大多数研究中,只有一个小珠被每蚊15,16,27注入,但注入多珠是可能的,以研究在黑化响应19的限制。这些珠粒使用注射液(生理血清)来限制蚊子生理学紊乱注入和蚊子15,16,27的干燥。的染料加入到该溶液中,以缓解珠选择。它是用于检索珠子15,16,27解剖溶液是相同的。

用非致病性刺激接种昆虫的优点是把重点放在对免疫应答的直接作用的能力。有因寄生虫致病28,免疫抑制29没有复杂影响 31,或免疫逃避31 34。此外,与其他生活史性状,如长寿或繁殖力的刺激所造成的后果,也可以研究。因此,研究人员在研究进化生态学可能需要这样的工具2,35,36。例如,免疫挑战黄蜂有饥饿状态下寿命缩短。免疫刺激和部署类似的负面影响已经在不同的无脊椎动物模型中观察到,往往导致在很短的呃寿命或更少的繁殖成功13,27,37。这些研究可以在不同的环境中2,4,38进行。刺激免疫力也感兴趣的那些直接专注于免疫病理学39,40。

这个协议是基于珠子的接种的蚊子刺激黑化反应,并直接测量黑色素的量。这使得在不同的实验设置黑化反应的定量和定性研究。这样的工具可以扩展到其它的免疫反应,如抗菌响应于刺激热灭活细菌41。它也可以在许多生态设置进行。

Protocol

1.注射和解剖盐溶液通过加入氯化钠,氯化钾,及氯化钙2到蒸馏水在pH = 6.8,得到1.3毫摩尔NaCl,0.5mM的KCl和0.2mM的氯化钙制备的盐溶液。 将1ml的0.1%甲基绿溶液添加到99毫升计盐溶液的着色透明珠。这是0.001%甲基绿“注射液”。 然后,加入5毫升0.1%甲基绿溶液至45毫升生理盐水溶液。这个0.01%甲基绿“夹层溶液”是甲基绿10倍以上的浓缩,以促进珠粒在解剖…

Representative Results

蚊子没有所有melanize以同样的方式的珠,如一些珠粒少覆盖有黑色素比其他( 图1)。事实上,一些珠子由于缺乏黑色素的仍然蓝色,但其他人却完全黑了( 图1)。黑化值通过线性内插标准化为值0(这对应于蓝色和unmelanized珠)和100(对应于一个黑暗和严重白化珠)( 图2a和2b)之间。这些值表示的珠粒黑色素的程度…

Discussion

这种注射技术是很有用的激发和研究蚊子的黑化反应。例如,在这里我们研究的免疫刺激负荷的效果。

在此过程中的关键步骤是正确接种蚊子。以飞行肌或蚊子本身的任何过多的损害可能会阻止喂养蚊子或解剖之前,可能杀死它。第二个关键步骤是保持蚊子冰足够长的时间敲出来没有杀害他们。一个小容器将缓解和加快这一进程,因为它能够与冰更密切的联系。最后,在剥?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was possible through funding from the University of Neuchâtel. We would like to thank all the students that helped in improving this technique, namely our colleague Kevin Thievent. We would also like to thank the members of the Thomas Lab for making their laboratory available. We would like to thank Janet Teeple for her help with mosquito rearing. We would also like to thanks Loyal Hall in the laboratory of Pr. Tom Baker for his help in the preparation of the micro capillary glass tubes.

Materials

Microcapillary glass tubes GB120TF-10 science-products.com GB120TF-10 http://www.science-products.com/Products/CatalogG/Glass/Glass.html
Microcaps Capillary pipette bulb Drumond 1-000-9000
negatively charged Sephadex CM C-25 beads Sigma-Aldrich, Steinheim, Germany C25120 SIGMA need few to start
Methyl green Sigma-Aldrich 323829 ALDRICH need few to start
Software ImageJ opensource Version 1.47f7 or later

References

  1. Dong, Y., Aguilar, R., Xi, Z., Warr, E., Mongin, E., Dimopoulos, G. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS pathog. 2 (6), e52 (2006).
  2. Sadd, B. M., Schmid-Hempel, P. PERSPECTIVE: Principles of ecological immunology. Evolutionary Appl. 2 (1), 113-121 (2008).
  3. Crompton, P. D., Moebius, J., et al. Malaria Immunity in Man and Mosquito: Insights into Unsolved Mysteries of a Deadly Infectious Disease*. Annu Rev Immuno. 32 (1), 157-187 (2014).
  4. Schmid-Hempel, P. EVOLUTIONARY ECOLOGY OF INSECT IMMUNE DEFENSES. Annu Rev Entomol. 50 (1), 529-551 (2005).
  5. Hillyer, J. F., Schmidt, S. L., Christensen, B. M. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J parasito. 89 (1), 62-69 (2003).
  6. Carissimo, G., Pondeville, E., et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. PNAS. 112 (2), E176-E185 (2015).
  7. Christensen, B. M., Li, J., Chen, C. -. C., Nappi, A. J. Melanization immune responses in mosquito vectors. Trends parasito. 21 (4), 192-199 (2005).
  8. Collins, F., Sakai, R., et al. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science. 234 (4776), 607-610 (1986).
  9. Warr, E., Lambrechts, L., Koella, J. C., Bourgouin, C., Dimopoulos, G. Anopheles gambiae immune responses to Sephadex beads: Involvement of anti-Plasmodium factors in regulating melanization. Insect Biochem Molec. 36 (10), 769-778 (2006).
  10. Fuchs, S., Behrends, V., Bundy, J. G., Crisanti, A., Nolan, T. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito. PloS one. 9 (1), e84865 (2014).
  11. Cerenius, L., Söderhäll, K. The prophenoloxidase-activating system in invertebrates. Immuno Rev. 198, 116-126 (2004).
  12. Cerenius, L., Lee, B. L., Söderhäll, K. The proPO-system: pros and cons for its role in invertebrate immunity. Trend Immuno. 29 (6), 263-271 (2008).
  13. Moret, Y., Schmid-Hempel, P. . Survival for immunity: the price of immune system activation for bumblebee workers. , 1166-1168 (2000).
  14. Suwanchaichinda, C., Paskewitz, S. M. Effects of Larval Nutrition, Adult Body Size, and Adult Temperature on the Ability of Anopheles gambiae(Diptera: Culicidae) to Melanize Sephadex Beads. J Med Entomol. 35 (2), 157-161 (1998).
  15. Chun, J., Riehle, M., Paskewitz, S. M. Effect of Mosquito Age and Reproductive Status on Melanization of Sephadex Beads in Plasmodium-Refractory and -Susceptible Strains of Anopheles gambiae. J Invertebr Pathol. 66 (1), 11-17 (1995).
  16. Schwartz, A., Koella, J. C. Melanization of Plasmodium falciparum and C-25 Sephadex Beads by Field-Caught Anopheles gambiae (Diptera: Culicidae) from Southern Tanzania. J Med Entomol. 39 (1), 84-88 (2002).
  17. Zahedi, M., Denham, D. A., Ham, P. J. Encapsulation and melanization responses of Armigeres subalbatus against inoculated Sephadex beads. J Invertebr Pathol. 59 (3), 258-263 (1992).
  18. Laughton, A. M., Garcia, J. R., Altincicek, B., Strand, M. R., Gerardo, N. M. Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. J insect physiol. 57 (6), 830-839 (2011).
  19. Barreaux, A. M. G., Barreaux, P., Koella, J. C. Overloading the immunity of the mosquito Anopheles gambiae with multiple immune challenges. Parasite Vector. 9 (1), 210 (2016).
  20. Lazzaro, B. P., Rolff, J. Danger, Microbes, and Homeostasis. Science. 332 (6025), 43-44 (2011).
  21. Arrighi, R. B. G., Faye, I. Plasmodium falciparum GPI toxin: a common foe for man and mosquito. Acta trop. 114 (3), 162-165 (2010).
  22. Michel, K., Kafatos, F. C. Mosquito immunity against Plasmodium. Insect Biochem Molec. 35 (7), 677-689 (2005).
  23. Osta, M. A., Christophides, G. K., Vlachou, D., Kafatos, F. C. Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol. 207 (15), 2551-2563 (2004).
  24. Christophides, G. K., Vlachou, D., Kafatos, F. C. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev. 198 (1), 127-148 (2004).
  25. Blair, C. D. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future microbiol. 6 (3), 265-277 (2011).
  26. Fragkoudis, R., Attarzadeh-Yazdi, G., Nash, A. A., Fazakerley, J. K., Kohl, A. Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol. , (2009).
  27. Schwartz, A., Koella, J. C. The cost of immunity in the yellow fever mosquito, Aedes aegypti depends on immune activation. J evol biol. 17 (4), 834-840 (2004).
  28. Lambrechts, L., Vulule, J. M., Koella, J. C. Genetic correlation between melanization and antibaterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution. 58 (10), 2377 (2004).
  29. Boete, C., Paul, R. E. L., Koella, J. C. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. P Roy Soc B-Biol Sci. 271 (1548), 1611-1615 (2004).
  30. Sacks, D., Sher, A. Evasion of innate immunity by parasitic protozoa. Nat immunol. 3 (11), 1041-1047 (2002).
  31. Zambrano-Villa, S., Rosales-Borjas, D., Carrero, J. C., Ortiz-Ortiz, L. How protozoan parasites evade the immune response. Trend Parasito. 18 (6), 272-278 (2002).
  32. Damian, R. T. Parasite immune evasion and exploitation: reflections and projections. Parasitology. 115, S169-S175 (1997).
  33. Schmid-Hempel, P. Parasite immune evasion: a momentous molecular war. Trend ecol evol. 23 (6), 318-326 (2008).
  34. Schmid-Hempel, P. Immune defence, parasite evasion strategies and their relevance for "macroscopic phenomena" such as virulence. P Roy Soc B-Biol Sci. 364 (1513), 85-98 (2009).
  35. Stearns, S. C., Koella, J. C. The evolution of phenotypic plasticity in life history traits- predictions of reaction norms for age and size at maturity. Evolution. 40 (5), 893-913 (1986).
  36. Stearns, S. C. Life-history tactics: a review of the ideas. Q rev biol. 51 (1), 3-47 (1976).
  37. Valtonen, T. M., Kleino, A., Ramet, M., Rantala, M. J. Starvation Reveals Maintenance Cost of Humoral Immunity. Evol Biol. 37 (1), 49-57 (2010).
  38. Sheldon, B. C., Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trend Ecol Evo. 11 (8), 317-321 (1996).
  39. Graham, A. L., Allen, J. E., Read, A. F. Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Evol S. 36, 373-397 (2005).
  40. Best, A., Long, G., White, A., Boots, M. The implications of immunopathology for parasite evolution. P Roy Soc B-Biol Sci. 279 (1741), 3234-3240 (2012).
  41. Cator, L. J., George, J., et al. 34;Manipulation" without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. P Roy Soc B-Biol Sci. 280 (1763), 20130711 (2013).
  42. Voordouw, M. J., Lambrechts, L., Koella, J. No maternal effects after stimulation of the melanization response in the yellow fever mosquito Aedes aegypti. Oikos. 117 (8), 1269-1279 (2008).
  43. Paskewitz, S., Riehle, M. A. Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev comp immunol. 18 (5), 369-375 (1994).

Play Video

Cite This Article
Barreaux, A. M. G., Barreaux, P., Thomas, M. B., Koella, J. C. Inoculating Anopheles gambiae Mosquitoes with Beads to Induce and Measure the Melanization Immune Response. J. Vis. Exp. (119), e55013, doi:10.3791/55013 (2017).

View Video