Dos tipos de superficies, acero de poliéster recubierto y de poliéster recubierta con una capa de nanopartículas de sílice, se estudiaron. Ambas superficies se expusieron a la luz solar, que se encontró para provocar cambios sustanciales en la química y la nanoescala topografía de la superficie.
La corrosión de superficies metálicas es frecuente en el medio ambiente y es de gran preocupación en muchas áreas, incluyendo las industrias militares, transporte, aviación, construcción y alimentos, entre otros. Poliéster y recubrimientos que contienen tanto del poliéster y nanopartículas de sílice (SiO 2 NPS) han sido ampliamente utilizados para proteger los sustratos de acero de la corrosión. En este estudio, hemos utilizado de rayos X espectroscopia de fotoelectrones, reflexión total atenuada infrarrojos micro-espectroscopía, las medidas del ángulo de contacto del agua, perfiles óptica y microscopía de fuerza atómica para proporcionar una idea de cómo la exposición a la luz solar puede causar cambios en la micro y nanoescala integridad de los recubrimientos. No se detectó ningún cambio significativo en la superficie micro-topografía utilizando perfilometría óptica, sin embargo, se detectaron cambios de nanoescala estadísticamente significativas a la superficie usando la microscopía de fuerza atómica. Análisis de la espectroscopia de fotoelectrones de rayos X y micro de infrarrojos de reflexión total atenuadalos datos de espectroscopia reveló que la degradación de los grupos éster se había producido a través de la exposición a la luz ultravioleta para formar COO ·, -H 2 · C, -O · ·, -CO radicales. Durante el proceso de degradación, CO y CO 2 también se produjeron.
Environmental corrosion of metals in the environment is both prevalent and costly1-3. A recent study conducted by the Australasian Corrosion Association (ACA) reported that corrosion of metals resulted in a yearly cost of $982 million, which was directly associated with the degradation of assets and infrastructure through metallic corrosion within the water industry4. From an international perspective, the World Corrosion Organization estimated that metallic corrosion was responsible for a direct cost of $3.3 trillion, over 3% of the world’s GDP5. The process of galvanizing as a corrosion preventative method has been widely used to increase the lifespan of steel material6. In humid and subtropical climates, however, water tends to condense into small pockets or grooves within the surface of the galvanized steel, leading to the acceleration of corrosion rates through pit corrosion7,8. Thermosetting polymer coatings based on polyesters have been developed to coat the galvanized steel substrata increasing their ability to withstand humid weathering conditions for items such as satellite dishes, garden furniture, air-conditioning units or agricultural construction equipment9-11. Unfortunately polymer coatings on steel surfaces have been found to be considerably adversely affected by the presence of high levels of ultraviolet (uv) radiation12-14. Coatings comprised of silica nanoparticles (SiO2) spread over a polymer layer have been widely used with a view to increasing their corrosion-, wear-, tear- and degradation-resistance15,16. The tendency of the protective polymeric coatings to form pores and cracks can be reduced by incorporating nanoparticles (NPs), which contribute to the passive obstruction of corrosion initiation17,18. Also, the mechanical stability of the protective polymeric layer can be improved by NPs inclusion. However, these coatings act as passive physical barriers and, in comparison to the galvanization approach, cannot inhibit corrosion propagation actively.
An in-depth understanding of the effect that high-levels of ultraviolet light exposure under humid conditions upon these metal coatings is yet to be obtained. In this paper, a wide range of surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared micro-spectroscopy (ATR IR), contact angle goniometry, optical profiling and atomic force microscopy (AFM) will be employed to examine the changes in the surface of steel coatings prepared from polyester- and silica nanoparticle-coated polyester (silica nanoparticles/polyester) after exposure to sunlight. Furthermore, the aim of this work is to give a concise, practical overview of the overall characterization techniques to examine weathered samples.
revestimientos de poliéster se han utilizado ampliamente para proteger sustratos de acero de la corrosión que se produciría en una superficie sin recubrimiento debido a la acumulación de humedad y contaminantes. La aplicación de recubrimientos de poliéster puede proteger el acero de la corrosión; sin embargo, la eficacia a largo plazo de estos recubrimientos se ve comprometida si están expuestos a altos niveles de luz ultravioleta en condiciones de humedad, como ocurre en los climas tropicales. nanopartículas d…
The authors have nothing to disclose.
Funding from the Australian Research Council Industrial Transformation Research Hubs Scheme (Project Number IH130100017) is gratefully acknowledged. Authors gratefully acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to the characterisation instruments. This research was also undertaken on the Infrared Microscopectroscopy beamline at the Australian Synchrotron, Victoria, Australia.
polyester-coated steel silica nanoparticle-polyester coated steel substrata |
BlueScope Steel | Samples provided by company | |
Millipore PetriSlideTM | Fisher Scientific | PDMA04700 | Storing samples |
Thermo ScientificTM K-alpha X-ray Photoelectron Spectrometer |
Thermo Fisher Scientific, Inc. | IQLAADGAAFFACVMAHV | Acquire XPS spectra |
Avantage Data System | Thermo Fisher Scientific, Inc. | IQLAADGACKFAKRMAVI | Analyse XPS spectra |
A Bruker Hyperion 2000 microscope | Bruker Corporation | Synchrotron integrated instrument | |
Bruker Opus v. 7.2 | Bruker Corporation | ATR-IR analysis software | |
Contact angle goniometer, FTA1000c | First Ten Ångstroms Inc., VA, USA | Measuring the wettability of surfaces | |
FTA v. 2.0 | First Ten Ångstroms Inc., VA, USA | Anaylyzing water contact angle | |
Optical profiler, Wyko NT1100 | Bruker Corporation | Measure surface topography | |
Innova atomic force microscope | Bruker Corporation | Measure surface topography | |
Phosphorus doped silicon probes, MPP-31120-10 | Bruker Corporation | AFM probes | |
Gwyddion software | http://gwyddion.net/ | Software used to measure optical profiling and AFM data |