Summary

La evolución de sílice recubrimientos de nanopartículas-poliéster sobre superficies expuestas al sol

Published: October 11, 2016
doi:

Summary

Dos tipos de superficies, acero de poliéster recubierto y de poliéster recubierta con una capa de nanopartículas de sílice, se estudiaron. Ambas superficies se expusieron a la luz solar, que se encontró para provocar cambios sustanciales en la química y la nanoescala topografía de la superficie.

Abstract

La corrosión de superficies metálicas es frecuente en el medio ambiente y es de gran preocupación en muchas áreas, incluyendo las industrias militares, transporte, aviación, construcción y alimentos, entre otros. Poliéster y recubrimientos que contienen tanto del poliéster y nanopartículas de sílice (SiO 2 NPS) han sido ampliamente utilizados para proteger los sustratos de acero de la corrosión. En este estudio, hemos utilizado de rayos X espectroscopia de fotoelectrones, reflexión total atenuada infrarrojos micro-espectroscopía, las medidas del ángulo de contacto del agua, perfiles óptica y microscopía de fuerza atómica para proporcionar una idea de cómo la exposición a la luz solar puede causar cambios en la micro y nanoescala integridad de los recubrimientos. No se detectó ningún cambio significativo en la superficie micro-topografía utilizando perfilometría óptica, sin embargo, se detectaron cambios de nanoescala estadísticamente significativas a la superficie usando la microscopía de fuerza atómica. Análisis de la espectroscopia de fotoelectrones de rayos X y micro de infrarrojos de reflexión total atenuadalos datos de espectroscopia reveló que la degradación de los grupos éster se había producido a través de la exposición a la luz ultravioleta para formar COO ·, -H 2 · C, -O · ·, -CO radicales. Durante el proceso de degradación, CO y CO 2 también se produjeron.

Introduction

Environmental corrosion of metals in the environment is both prevalent and costly1-3. A recent study conducted by the Australasian Corrosion Association (ACA) reported that corrosion of metals resulted in a yearly cost of $982 million, which was directly associated with the degradation of assets and infrastructure through metallic corrosion within the water industry4. From an international perspective, the World Corrosion Organization estimated that metallic corrosion was responsible for a direct cost of $3.3 trillion, over 3% of the world’s GDP5. The process of galvanizing as a corrosion preventative method has been widely used to increase the lifespan of steel material6. In humid and subtropical climates, however, water tends to condense into small pockets or grooves within the surface of the galvanized steel, leading to the acceleration of corrosion rates through pit corrosion7,8. Thermosetting polymer coatings based on polyesters have been developed to coat the galvanized steel substrata increasing their ability to withstand humid weathering conditions for items such as satellite dishes, garden furniture, air-conditioning units or agricultural construction equipment9-11. Unfortunately polymer coatings on steel surfaces have been found to be considerably adversely affected by the presence of high levels of ultraviolet (uv) radiation12-14. Coatings comprised of silica nanoparticles (SiO2) spread over a polymer layer have been widely used with a view to increasing their corrosion-, wear-, tear- and degradation-resistance15,16. The tendency of the protective polymeric coatings to form pores and cracks can be reduced by incorporating nanoparticles (NPs), which contribute to the passive obstruction of corrosion initiation17,18. Also, the mechanical stability of the protective polymeric layer can be improved by NPs inclusion. However, these coatings act as passive physical barriers and, in comparison to the galvanization approach, cannot inhibit corrosion propagation actively.

An in-depth understanding of the effect that high-levels of ultraviolet light exposure under humid conditions upon these metal coatings is yet to be obtained. In this paper, a wide range of surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared micro-spectroscopy (ATR IR), contact angle goniometry, optical profiling and atomic force microscopy (AFM) will be employed to examine the changes in the surface of steel coatings prepared from polyester- and silica nanoparticle-coated polyester (silica nanoparticles/polyester) after exposure to sunlight. Furthermore, the aim of this work is to give a concise, practical overview of the overall characterization techniques to examine weathered samples.

Protocol

1. Las muestras de acero Obtener muestras de acero de 1 mm de espesor de un proveedor comercial. Nota: Las muestras se recubrieron con poliéster o de poliéster recubierto con nanopartículas de sílice. Exponer las muestras a la luz solar en Rockhampton, Queensland, Australia: recoger muestras después de intervalos de un año y cinco años durante un período total de 5 años. Cortar paneles de muestra en discos circulares de 1 cm de diámetro utilizando perforadora….

Representative Results

Se recogieron las muestras de acero revestidas que habían sido sometidas a la exposición a la luz del sol, ya sea para uno o cinco años, y las mediciones del ángulo de contacto de agua se llevaron a cabo para determinar si la exposición había dado lugar a un cambio en la hidrofobicidad de la superficie de la superficie (Figura 2 ). Figura 2. Variación…

Discussion

revestimientos de poliéster se han utilizado ampliamente para proteger sustratos de acero de la corrosión que se produciría en una superficie sin recubrimiento debido a la acumulación de humedad y contaminantes. La aplicación de recubrimientos de poliéster puede proteger el acero de la corrosión; sin embargo, la eficacia a largo plazo de estos recubrimientos se ve comprometida si están expuestos a altos niveles de luz ultravioleta en condiciones de humedad, como ocurre en los climas tropicales. nanopartículas d…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Funding from the Australian Research Council Industrial Transformation Research Hubs Scheme (Project Number IH130100017) is gratefully acknowledged. Authors gratefully acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to the characterisation instruments. This research was also undertaken on the Infrared Microscopectroscopy beamline at the Australian Synchrotron, Victoria, Australia.

Materials

polyester-coated steel
silica nanoparticle-polyester coated steel substrata
BlueScope Steel Samples provided by company
Millipore PetriSlideTM  Fisher Scientific PDMA04700 Storing samples
Thermo ScientificTM K-alpha
X-ray Photoelectron Spectrometer
Thermo Fisher Scientific, Inc. IQLAADGAAFFACVMAHV Acquire XPS spectra
Avantage Data System Thermo Fisher Scientific, Inc. IQLAADGACKFAKRMAVI Analyse XPS spectra
A Bruker Hyperion 2000 microscope  Bruker Corporation Synchrotron integrated instrument
Bruker Opus v. 7.2 Bruker Corporation ATR-IR analysis software
Contact angle goniometer, FTA1000c First Ten Ångstroms Inc., VA, USA Measuring the wettability of surfaces
FTA v. 2.0 First Ten Ångstroms Inc., VA, USA Anaylyzing water contact angle
Optical profiler, Wyko NT1100  Bruker Corporation Measure surface topography
Innova atomic force microscope  Bruker Corporation Measure surface topography
Phosphorus doped silicon probes, MPP-31120-10 Bruker Corporation AFM probes
Gwyddion software http://gwyddion.net/ Software used to measure optical profiling and AFM data

References

  1. Fathima Sabirneeza, A. A., Geethanjali, R., Subhashini, S. Polymeric corrosion inhibitors for iron and its alloys: A review. Chem. Eng. Commun. 202 (2), 232-244 (2015).
  2. Gupta, R. K., Birbilis, N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review. Corros. Sci. 92, 1-15 (2015).
  3. Lee, H. S., Ismail, M. A., Choe, H. B. Arc thermal metal spray for the protection of steel structures: An overview. Corros. Rev. 33 (1-2), 31-61 (2015).
  4. Moore, G. . Corrosion challenges – urban water industry. , (2010).
  5. Hays, G. F. . World Corrosion Organization. , (2013).
  6. Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, P. Y., Payer, J. H. Corrosion cost and preventive strategies in the United States. CC Technologies Laboratories, Incorporated; NACE International; Federal Highway Administration, NACE International. , (2002).
  7. Pojtanabuntoeng, T., Singer, M., Nesic, S. . Corrosion 2011. , (2011).
  8. Jas̈niok, T., Jas̈niok, M., Tracz, T., Hager, I. . 7th Scientific-Technical Conference on Material Problems in Civil Engineering, MATBUD 2015. , 316-323 (2015).
  9. Cambier, S. M., Posner, R., Frankel, G. S. Coating and interface degradation of coated steel, Part 1: Field exposure. Electrochim. Acta. 133, 30-39 (2014).
  10. Barletta, M., Gisario, A., Puopolo, M., Vesco, S. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier. Mater. Des. 69, 130-140 (2015).
  11. Fu, J., et al. Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res. 51 (18), 6377-6386 (2012).
  12. Hattori, M., Nishikata, A., Tsuru, T. EIS study on degradation of polymer-coated steel under ultraviolet radiation. Corros. Sci. 52 (6), 2080-2087 (2010).
  13. Yang, X. F., et al. Weathering degradation of a polyurethane coating. Polym. Degrad. Stab. 74 (2), 341-351 (2001).
  14. Armstrong, R. D., Jenkins, A. T. A., Johnson, B. W. An investigation into the uv breakdown of thermoset polyester coatings using impedance spectroscopy. Corros. Sci. 37 (10), 1615-1625 (1995).
  15. Zhou, W., Liu, M., Chen, N., Sun, X. Corrosion properties of sol-gel silica coatings on phosphated carbon steel in sodium chloride solution. J. Sol. Gel. Sci. Technol. 76 (2), 358-371 (2015).
  16. Hollamby, M. J., et al. Hybrid polyester coating incorporating functionalized mesoporous carriers for the holistic protection of steel surfaces. Adv. Mater. 23 (11), 1361-1365 (2011).
  17. Borisova, D., Möhwald, H., Shchukin, D. G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano. 5 (3), 1939-1946 (2011).
  18. Wang, M., Liu, M., Fu, J. An intelligent anticorrosion coating based on pH-responsive smart nanocontainers fabricated via a facile method for protection of carbon steel. J. Mater. Chem. A. 3 (12), 6423-6431 (2015).
  19. Truong, V. K., et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 31 (13), 3674-3683 (2010).
  20. Nečas, D., Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 10 (1), 181-188 (2012).
  21. Crawford, R. J., Webb, H. K., Truong, V. K., Hasan, J., Ivanova, E. P. Surface topographical factors influencing bacterial attachment. Adv. Colloid Interface Sci. 179-182, 142-149 (2012).
  22. Allen, N. S., Edge, M., Mohammadian, M., Jones, K. Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate). Polym. Degrad. Stab. 43 (2), 229-237 (1994).
  23. Newman, C. R., Forciniti, D. Modeling the ultraviolet photodegradation of rigid polyurethane foams. Ind. Eng. Chem. Res. 40 (15), 3346-3352 (2001).
  24. Ivanova, E. P., et al. Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate) polymer surfaces. Nanotechnol. Sci. Appl. 1, 33-44 (2008).
  25. Biggs, S., Lukey, C. A., Spinks, G. M., Yau, S. T. An atomic force microscopy study of weathering of polyester/melamine paint surfaces. Prog. Org. Coat. 42 (1-2), 49-58 (2001).
  26. Signor, A. W., VanLandingham, M. R., Chin, J. W. Effects of ultraviolet radiation exposure on vinyl ester resins: Characterization of chemical, physical and mechanical damage. Polym. Degrad. Stab. 79 (2), 359-368 (2003).
  27. Wang, H., et al. Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog. Org. Coat. 82, 74-80 (2015).
  28. Liszka, B. M., Lenferink, A. T. M., Witkamp, G. J., Otto, C. Raman micro-spectroscopy for quantitative thickness measurement of nanometer thin polymer films. J. Raman Spectrosc. 46 (12), 1230-1234 (2015).
  29. Alghunaim, A., Kirdponpattara, S., Newby, B. M. Z. Techniques for determining contact angle and wettability of powders. Powder Technol. 287, 201-215 (2016).
  30. Treviño, M., et al. Erosive wear of plasma electrolytic oxidation layers on aluminium alloy 6061. Wear. 301 (1-2), 434-441 (2013).

Play Video

Cite This Article
Truong, V. K., Stefanovic, M., Maclaughlin, S., Tobin, M., Vongsvivut, J., Al Kobaisi, M., Crawford, R. J., Ivanova, E. P. The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight. J. Vis. Exp. (116), e54309, doi:10.3791/54309 (2016).

View Video