Summary

一个简单的流式细胞仪法测量葡萄糖的摄取和葡萄糖转运表达单核细胞亚群的全血

Published: August 12, 2016
doi:

Summary

Monocytes are integral components of the human innate immune system that rely on glycolytic metabolism when activated. We describe a flow cytometry protocol to measure glucose transporter expression and glucose uptake by total monocytes and monocyte subpopulations in fresh whole blood.

Abstract

单核细胞是可通过与某些慢性炎性疾病相关的病原体和炎症被激活先天免疫细胞。单核细胞激活诱导效应职能和免受氧化糖酵解来代谢随之而来的转变,伴随增加葡萄糖转运蛋白表达。这增加了糖酵解代谢也为单核细胞经过培训免疫力,先天免疫记忆形式观察。虽然在体外单核细胞检查葡萄糖转运蛋白表达和葡萄糖摄取的协议进行了说明,没有已被多参数流式细胞仪在全血检测。我们描述了荧光葡萄糖类似物2-NBDG摄取全血中总单核细胞和经典(CD14 + CD16 – )测定的多参数流式细胞协议,中间体(CD14 + CD16 +)和非经典( CD14 + CD16 +)单核细胞亚群。该方法可用于检查稳态和炎症性疾病中总单核细胞和单核细胞亚群的葡萄糖转运蛋白表达和葡萄糖摄取,并且可以容易地修改,以检查血液中的其它白细胞和白细胞亚群的葡萄糖摄取。

Introduction

单核细胞是正在迅速动员到感染和炎症1的位点的人的先天免疫系统的重要组成部分。单核细胞的活化是限制由病原体产生急性损害的关键,也是中央对多种慢性疾病,包括动脉粥样硬化2,3癌症和HIV 4,5的发病机制。

静息和活化的单核细胞的代谢显着不同,以利用氧化代谢利用糖酵解代谢( ,葡萄糖发酵成乳酸)静息单核细胞和活化的单核6。单核细胞的活化诱导葡萄糖转运,可以增加葡萄糖摄取糖酵解代谢7的表达。单核细胞葡萄糖转运蛋白1(的Glut1)是激活期间上调一个这样的转运,其表达已显示导致生产v中促炎细胞因子的itro和在肥胖小鼠8的脂肪组织。由卡波西肉瘤相关疱疹病毒单核细胞系感染导致9的Glut1细胞上调,我们最近发现,慢性感染艾滋病毒期间的Glut1表达的单核细胞百分比增加是未经处理及联合抗逆转录病毒疗法治疗的感染10时在座。总而言之,这些研究表明,葡萄糖摄取和由单核细胞糖酵解代谢许多炎性疾病的重要方面。因此,一个简单的方法来测量稳态期间的单核细胞的Glut1表达和葡萄糖摄取和炎性疾病可能是使用了广泛的研究人员。

人单核细胞是异质的,正在由能够由细胞表面标记物CD14和CD16 11,12的差异表达进行检查三个不同的子集。经典单核细胞表达CD14的较高水平,但不表达CD16(CD14 + CD16 – ),中间的单核细胞表达CD14的高水平和CD16(CD14 + CD16 +)的中间电平,和非经典的单核细胞表达CD14的水平低和CD16高的水平(CD14 + CD16 +)。表达CD16的单核细胞被称为CD16 +单核细胞,这相比CD16 单核细胞有炎性细胞因子的高表达和能力,更有效地呈递抗原13,14。单核细胞的大约10%与炎症15中观察到的更高的百分比的动态平衡期间表达CD16。单核细胞亚群与某些疾病状态相关联,并且可能是疾病和疾病进展16的有用的生物标志物。

我们的目标是确定可以测量通过在尽可能接近的phy条件人单核细胞和单核细胞亚群的葡萄糖转运蛋白表达和葡萄糖摄取的方法siological条件越好。以前的研究测量的单核细胞葡萄糖转运蛋白的表达和葡萄糖摄取17,18,虽然这些检测方法可以比较生理条件19已经改变蛋白表达分离的单核细胞,并没有以前的研究调查了人单核细胞亚群。使用多参数流式细胞术,我们描述的方法来检查该荧光葡萄糖类似物2-NBDG按总单核细胞和单核细胞亚群的葡萄糖转运蛋白表达和摄取(基于CD14和CD16的表达)全未经处理的血液内。

Protocol

注:艾滋病病毒感染者和艾滋病病毒感染者是从传染病股在阿尔弗雷德医院在墨尔本,澳大利亚招募,并从当地社区,分别为。从所有参与者获得知情同意书,研究批准了阿尔弗雷德医院研究伦理委员会。 在单核细胞和单核细胞亚群1.细胞的Glut1表面检测收集血液柠檬酸ACD-B的抗凝管并开始实验在生物安全柜收集1小时之内。 加入100微升血液聚丙烯管。加2ml 1X的?…

Representative Results

补偿必须单独荧光染料,以防止荧光溢出来执行。单核细胞首先通过选通基于前向和侧向散射富集。给出的图是从六个或更多个参与者对全血进行至少六个独立实验的代表如先前报道10 图1A示出了由CD3内选通由细胞散射和T细胞的排斥的单核细胞的最初选通-人口。然后单核细胞被选通为单独或与CD16以确定总单核细胞或单核细胞亚群的组合CD14的?…

Discussion

这里描述的协议细节的简单方法来检查在全血中的单核细胞和单核细胞亚群的葡萄糖转运蛋白表达和荧光葡萄糖类似物的摄取。通过在全血评估-2- NBDG摄取,此技术允许类似于在体内条件。先前的研究中通过密度离心17日全血中分离的单核细胞检测6 NBDG摄取。然而,这项研究并没有审查的单核细胞亚群,并从全血中单核细胞的分离可以潜在地改变某些细胞表面分子19的表达。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由澳大利亚中心艾滋病毒和肝炎病毒研究从华盛顿艾滋病研究中心大学(CFAR),根据奖号AI027757美国国立卫生研究院资助的程序,它支持(ACH 2)和2010年的发展拨款(CNIHR)资助通过下面的NIH研究所和研究中心(NIAID,NCI,镍氢电池,NIDA,NICHD,NHLBI,NIA)。 CSP是CNIHR和ACH 赠款获得者。 SMC是澳大利亚(NHMRC)主要研究奖学金的国家健康和医学研究理事会的收件人。作者非常感谢由伯纳特机构收到了维多利亚经营性基础设施项目的支持这项工作的贡献。我们承认格扎Paukovic和伊娃ORLOWSKI – 奥利弗从AMREP流式细胞仪核心设施流式细胞仪培训和技术咨询协助。我们感谢安格斯摩根媒体教练和视频拍摄的组织。我们的感激杰西马森和讨伐异教徒阿卜杜勒阿齐兹K. Alzahrani在视频拍摄过程中的实验室协助。我们感谢大卫博士SIMAR在医学科学,新南威尔士大学,澳大利亚谁提供关键的方法建议,学校的努力。 CSP想感谢www.nice-consultants.com用于图形磋商。

作者的贡献:

CSP构思项目,设计并进行了实验,分析和解释数据,并且写了稿子。 JJA解释数据和撰写文章。 TRB写的稿子。 JMM解释的数据,提出关键知识的建议,并审查了原稿。 SMC解释的数据,做出关键的智力建议并审查了原稿。

Materials

VACUETT Tube 9 ml ACD-B anticoagulant tubes Greiner Bio-One GmbH 455094
5 ml sterile polypropylene tubes BD Biosciences 352063
Albumin from Bovine Serum (BSA) Sigma-Aldrich A7906
16% formaldehyde solution Electron Microscopy Science 15710
BD FACS lysing solution (10X) BD Biosciences 349202 Dilute BD FACS lysing solution 1/10 with deionized water for working concentration (store for up to 1 week at 4°C)
anti-CD3-PE BD Biosciences 555340
anti CD14-APC BD Biosciences 555399
anti-CD16-PECy7 BD Biosciences 557744
anti-Glut1-FITC R & D Systems FAB1418F
IgG2b-FITC R & D Systems IC0041F
2-NBDG Life technologies N13195 Suspend 5 mg of 2-NBDG into 1 ml of deionized water to make a 14.60 mM stock solution (keep for up to 6 months at 4°C). To make the working 2-NBDG concentration, dilute stock 1/100 with 1X DPBS. Cover with foil. (store for up to 1 week at 4°C)
Dulbecco’s Phosphate Buffered Saline (1X) Life technologies 14190-144 To make wash solution, add 0.5 g BSA per 100 ml DPBS (store for up to 2 weeks at 4°C)

References

  1. Shi, C., Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 11, 762-774 (2011).
  2. Woollard, K. J., Geissmann, F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 7, 77-86 (2010).
  3. Richards, D. M., Hettinger, J., Feuerer, M. Monocytes and macrophages in cancer: development and functions. Cancer Microenviron. 6, 179-191 (2013).
  4. Anzinger, J. J., Butterfield, T. R., Angelovich, T. A., Crowe, S. M., Palmer, C. S. Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J Immunol Res. 2014, 569819 (2014).
  5. Palmer, C., Cherry, C. L., Sada-Ovalle, I. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine. , (2016).
  6. Cheng, S. C., et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 345, 1250684 (2014).
  7. Maratou, E., et al. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest. 37, 282-290 (2007).
  8. Freemerman, A. J., et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 289, 7884-7896 (2014).
  9. Gonnella, R., et al. Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line. J Exp Clin Cancer Res. 32, 79 (2013).
  10. Palmer, C. S., et al. Glucose transporter 1-expressing proinflammatory monocytes are elevated in combination antiretroviral therapy-treated and untreated HIV+ subjects. J Immunol. 193, 5595-5603 (2014).
  11. Wong, K. L., et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 118, e16-e31 (2011).
  12. Ziegler-Heitbrock, L., et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 116, e74-e80 (2010).
  13. Belge, K. U., et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 168, 3536-3542 (2002).
  14. Frankenberger, M., Sternsdorf, T., Pechumer, H., Pforte, A., Ziegler-Heitbrock, H. W. Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood. 87, 373-377 (1996).
  15. Ziegler-Heitbrock, L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 81, 584-592 (2007).
  16. Ziegler-Heitbrock, L. . Macrophages: Biology and Role in the Pathology of Diseases. , 3-36 (2014).
  17. Dimitriadis, G., et al. Evaluation of glucose transport and its regulation by insulin in human monocytes using flow cytometry. Cytometry A. 64, 27-33 (2005).
  18. Fu, Y., Maianu, L., Melbert, B. R., Garvey, W. T. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis. 32, 182-190 (2004).
  19. Stibenz, D., Buhrer, C. Down-regulation of L-selectin surface expression by various leukocyte isolation procedures. Scand J Immunol. 39, 59-63 (1994).
  20. Ahmed, N., Kansara, M., Berridge, M. V. Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst. Biochem J. 327 (Pt 2), 369-375 (1997).
  21. Cutfield, W. S., Luk, W., Skinner, S. J., Robinson, E. M. Impaired insulin-mediated glucose uptake in monocytes of short children with intrauterine growth retardation). Pediatr Diabetes. 1, 186-192 (2000).
  22. Yoshioka, K., et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta. 1289, 5-9 (1996).
  23. Speizer, L., Haugland, R., Kutchai, H. Asymmetric transport of a fluorescent glucose analogue by human erythrocytes. Biochim Biophys Acta. 815, 75-84 (1985).
  24. Palmer, C. S., et al. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS. 28, 297-309 (2014).
  25. Palmer, C. S., Ostrowski, M., Balderson, B., Christian, N., Crowe, S. M. Glucose metabolism regulates T cell activation, differentiation, and functions. Frontiers in immunology. 6, (2015).
  26. Palmer, C. S., et al. Regulators of glucose metabolism in CD4 and CD8 T cells. International reviews of immunology. , 1-12 (2015).
  27. Palmer, C. S., Crowe, S. M. How does monocyte metabolism impact inflammation and aging during chronic HIV infection?. AIDS research and human retroviruses. 30, 335-336 (2014).
  28. McFadden, K., et al. Metabolic stress is a barrier to Epstein-Barr virus-mediated B-cell immortalization. Proceedings of the National Academy of Sciences of the United States of America. 113, E782-E790 (2016).
  29. Gamelli, R. L., Liu, H., He, L. K., Hofmann, C. A. Augmentations of glucose uptake and glucose transporter-1 in macrophages following thermal injury and sepsis in mice. Journal of leukocyte biology. 59, 639-647 (1996).
  30. Yin, Y., et al. Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. Journal of immunology. , 80-90 (2016).
  31. Yang, Z., Matteson, E. L., Goronzy, J. J., Weyand, C. M. T-cell metabolism in autoimmune disease. Arthritis research & therapy. 17, 29 (2015).
  32. Yin, Y., et al. Normalization of CD4+ T cell metabolism reverses lupus. Science translational medicine. 7, 274ra218 (2015).
  33. Barbera Betancourt, A., et al. Inhibition of Phosphoinositide 3-Kinase p110delta Does Not Affect T Cell Driven Development of Type 1 Diabetes Despite Significant Effects on Cytokine Production. PloS one. 11, e0146516 (2016).
  34. Barron, C. C., Bilan, P. J., Tsakiridis, T., Tsiani, E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism: clinical and experimental. 65, 124-139 (2016).
  35. Hegedus, A., Kavanagh Williamson, M., Huthoff, H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology. 11, 98 (2014).
  36. Taylor, H. E., et al. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication. PLoS Pathog. 11, e1004864 (2015).
  37. Loisel-Meyer, S., et al. Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci U S A. 109, 2549-2554 (2012).
  38. Palmer, C. S., et al. Emerging Role and Characterization of Immunometabolism: Relevance to HIV Pathogenesis, Serious Non-AIDS Events, and a Cure. J Immunol. 196 (11), 4437-4444 (2016).

Play Video

Cite This Article
Palmer, C. S., Anzinger, J. J., Butterfield, T. R., McCune, J. M., Crowe, S. M. A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood. J. Vis. Exp. (114), e54255, doi:10.3791/54255 (2016).

View Video