Summary

观察有丝分裂和动力学在现场斑马鱼胚胎

Published: July 15, 2016
doi:

Summary

Mitosis is critical to every living organism and defects often lead to cancer and developmental disorders. Using this imaging protocol and zebrafish as a model system, researchers can visualize mitosis in a live vertebrate organism and the multitude of defects that arise when mitotic processes are defective.

Abstract

有丝分裂为有机体的生长和分化至关重要。这个过程是高度动态的,需要有序的事件来完成适当的染色质凝聚,微管连接着丝粒,染色体分离和胞质分裂在小时间框架。在微妙的过程中的错误可能导致人类疾病,包括出生缺陷和癌症。传统的方法研究人类疾病的有丝分裂状态往往依赖于细胞培养系统,研究人类疾病时,缺乏自然的生理和发育/组织特异性环境有利。该协议提供了一种可视化,高分辨率,在脊椎动物系统染色体动态,斑马鱼克服许多障碍。该协议将详细可用于获得分裂的细胞,其包括的动态图像的方法: 在体外转录,斑马鱼养殖/收集,胚胎嵌入,和延时成像。优化和改性的该协议的ications进行了探讨。使用H2A.F / Z-EGFP(标签染色质)和mCherry-CAAX(标签细胞膜)的mRNA注射的胚胎,有丝分裂在AB野生型,auroraB hi1045 esco2 hi2865突变斑马鱼被可视化。在斑马鱼高分辨率实时成像允许一个观察多个核分裂进行统计量化有丝分裂的缺陷和有丝分裂进程的时机。此外,定义不当的有丝分裂过程( 即,板集合缺陷,染色体missegregation )和不适当的染色体的结果( 即,非整倍体,多倍体,微核 )质量方面观察被观察。该测定可用于组织分化/发展的观察,是适合于使用突变斑马鱼和药理学试剂的。在有丝分裂的缺陷如何导致癌症和发育障碍将极大地可视化提高疾病的发病机理的理解。

Introduction

有丝分裂为生长,分化和再生在活生物体中的关键的细胞过程是必不可少的。在准确的准备和在间DNA的复制,使细胞被起动来划分。有丝分裂,前期,第一阶段是由细胞周期蛋白B / CDK1的活化启动。前期的特征在于染色材料的缩合到染色体。核膜破裂发生在前期和前中期之间的过渡。在早中期,中心体,主轴形成成核中心,开始迁移到对立的两极,而在寻找着丝点附件延伸的微管。一旦附件转换到最终的微管附着和张力定位形成中期板1染色体。如果所有染色体正确连接时,纺锤体装配检验点满足,黏着​​环抱着姐妹染色单体一起被切开,微管缩短拉妹妹染色单体到对立的两极后期2,3时。最后阶段,末期,涉及围绕两个新的核核膜的细胞和改革的延伸。胞质分裂完成通过分离两个新的子细胞4-6的细胞质分裂过程。关键有丝分裂途径( 纺锤体装配检验点,中心体复制,姐妹染色单体凝聚力 )的改变可能会导致中期逮捕,染色体missegregation和基因组不稳定性7-10。最终,在通路控制有丝分裂的缺陷会导致发育障碍和癌症,有丝分裂的迫使可视化和其在现场,脊椎动物,多细胞生物体10-16缺陷。

斑马鱼的胚胎作为实时成像一个伟大的模式生物,由于透明组织,易于注射的,快速发展。使用斑马鱼,这份手稿的总体目标是描述的活5D有丝分裂17( 图1C)的(尺寸的X,Y,Z,时间和波长)成像的方法。利用斑马鱼突变体在不同有丝分裂的途径有缺陷的论证这种缺陷的结果。对于这个协议,极光B和Esco2突变体被选择来说明这些缺陷。极光B是一种激酶是参与纺锤体形成和微管附着的染色体乘客复合物(CPC)的一部分。它也需要在胞质18,19分裂沟的形成。在斑马鱼中,极光B缺乏导致皱纹的诱导,细胞分裂和染色体分离20的缺陷。 Esco2,另一方面,是一种乙酰这对姐妹染色单体凝聚力21,22是必不可少的。它乙酰化上从而稳定黏结,以确保正确的染色体分离的中期-后期过渡23环的SMC3部黏着。在斑马鱼Esco2的丧失导致为chromosome missegregation,过早姐妹染色单体分离,基因组不稳定和p53依赖性和独立的凋亡24,25。由于可用性,auroraB hi1045 esco2 hi2865突变斑马鱼(以下简称为aurB M / Mesco2 米/分 ,分别地)将被用来说明此技术25-27。

用荧光标记的细胞的机械耦合共焦显微镜使研究人员有丝分裂25,28,29中可视化染色和细胞膜动力学。荧光标记的组蛋白在历史上被用于可视化的染色质。组蛋白是四种不同的对(H2A,H2B,H3和H4)是负责该构成染色体30中的核小体结构组成的核蛋白质。尽管H2B可以说是在荧光蛋白中最常用的组蛋白小鼠和细胞培养,用组蛋白2A的,家庭Z(H2A.F / Z)已在斑马鱼31,32使用证明很好。伴刀豆球蛋白A和酪蛋白激酶1-γ,例如,定位于细胞膜和先前已显示有效的可视化细胞膜在海胆和果蝇33,34。其它研究已经表明,CAAX荧光标记蛋白标记的细胞膜并成功地斑马鱼31。 CAAX是受翻译后修饰的酶如farnesyltransferases和geranylgeranyltransferases识别的基序。由这些酶修饰导致蛋白质成为膜相关,从而标记的细胞膜35。

由于在斑马鱼的先前使用,该协议选择使用H2A.F / Z和CAAX标记染色质和细胞膜。这种方法的应用将允许研究者在单个细胞水平监测的有丝分裂,观察个人染色体动力学,以及同时监测可能影响组织的分化和发育的多个细胞分裂。本文将着眼于在单个单元格级别的有丝分裂过程中染色体成像分离的动态。在这个手稿,观察几个有丝分裂,分裂计算时间和破译的有丝分裂表型的能力进行说明和讨论。通过使用这些参数,生理学相关的数据可以被收集并施加到受有丝分裂的缺陷数的疾病状态。

Protocol

1. 体外转录线性化PCS2-H2A.F / Z-EGFP和/或PCS2-mCherry-CAAX载体通过的NotI限制性内切酶消化31。 体外转录试剂盒使用RNA,产生从每个模板5'加帽mRNA产物,根据制造商的协议。 净化用纯化试剂盒的皑皑的mRNA。按照制造商的说明。用无RNase H 2 O洗脱确定在使用分光光度计260nm处吸光度的RNA的浓度。 (OD 260×稀释×40微克/毫升)。 稀释的RNA?…

Representative Results

图2显示,观察使用AB野生型斑马鱼尾巴的宽视场多细胞分裂的能力。超过七有丝分裂细胞成像在14分钟的时间内( 电影1)。在两个小时的时间,当然,超过40的有丝分裂事件被抓获。平均来说,在AB观察50分裂的细胞,并在AUR B M /米胚( 图2B)30分裂的细胞。考虑到成像单元的数量,有丝分裂的细胞,以成像的计?…

Discussion

该方法的使用允许人们推断核膜破裂,通过微管的着丝点的附件形成中期板的,和姐妹染色单体的分离,以形成在体内和一个时间依赖性两个新的细胞。在斑马鱼中观察到的有丝分裂的能力是在固定的样品和细胞培养系统有利的,因为细胞在自然生理被成像,组织是透明其允许要使用的荧光蛋白质,他们开发比较快,和延时成像可以获取。成年斑马鱼的这个协议的使用是由于可能因被收购?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Kristen Kwan for the pCS2-H2A.F/Z-EGFP and pCS2-mCherry-CAAX vectors. We thank Chris Rodesch for tutoring us in live imaging in zebrafish. We thank Shawn Williams, Erik Malarkey and Brad Yoder for assistance in confocal imaging at UAB and the High Resolution Imaging Facility at UAB. The High Resolution Imaging Facility is supported by the UAB Comprehensive Cancer Center Support Grant (P30CA013148) and the Rheumatic Disease Core Center (P30 AR048311). J.M.P. is supported by the National Institute of Neurological Disease and Stroke (NIH R21 NS092105), and pilot grants from American Cancer Society (ACS IRG-60-001-53-IRG) and the UAB Comprehensive Cancer Center (P30CA013148). S.M.P. is supported by the Cell and Molecular Biology T32 Training Grant (5T32GM008111-28).

Materials

pCS2 vectors Gift from K. Kwan For plasmid of interest
NotI-HF restriction enzyme New England BioLabs R3189S For restriction digest of plasmid
mMessage SP6 kit Life Technologies AM1340 For in vitro transcription
RNeasy Mini kit Qiagen 74104 For purifying mRNA
100 x 15 mm petri dishes Fisher Scientific FB0875712 For housing embryos
microinjection mold homemade For holding embryos during microinjection
Agarose II Amresco 0815-25G For embedding embryos
Tricaine Sigma-Aldrich E10521-10G For anesthetizing embryos
Sodium Chloride Sigma-Aldrich S9888 For embryo water (E3 Blue), dissolved in UltraPure H2O
Potassium Chloride Sigma-Aldrich P3911 For embryo water (E3 Blue), dissolved in UltraPure H2O
Calcium Chloride Dihydrate Sigma-Aldrich C8106 For embryo water (E3 Blue), dissolved in UltraPure H2O
Magnesium Sulfate Fisher Scientific M7506 For embryo water (E3 Blue), dissolved in UltraPure H2O
Methylene Blue Hydrate Sigma-Aldrich MB1 For embryo water (E3 Blue), dissolved in UltraPure H2O
100 mm culture tube Fisher Scientific 50-819-812 For melted agar
35 mm glass coverslip bottom culture dish  MatTek Corp P35G-0-20-C  No. 0, 20 mm glass, For embedding embryos
#5 tweezers Dumont 72701-D For dechorionating embryos
21G 1 1/2 gauge needle  Becton Dickinson 305167 For positioning embryos in agar
Dissecting microscope Nikon AZ100 For screening and embedding embryos, any dissecting scope will do
Confocal microscope Nikon A1+ For time-lapse imaging
Confocal software NIS Elements AR 4.13.00 For image acquisition and processing

References

  1. Musacchio, A., Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol. 3 (10), 731-741 (2002).
  2. Li, X., Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature. 373 (6515), 630-632 (1995).
  3. Rieder, C. L., Cole, R. W., Khodjakov, A., Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol. 130 (4), 941-948 (1995).
  4. Hayles, J., Nurse, P. A review of mitosis in the fission yeast Schizosaccharomyces pombe. Exp Cell Res. 184 (2), 273-286 (1989).
  5. Pederson, T. Historical review: an energy reservoir for mitosis, and its productive wake. Trends Biochem Sci. 28 (3), 125-129 (2003).
  6. Sobel, S. G. Mini review: mitosis and the spindle pole body in Saccharomyces cerevisiae. J Exp Zool. 277 (2), 120-138 (1997).
  7. Thompson, S. L., Compton, D. A. Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci U S A. 108 (44), 17974-17978 (2011).
  8. Duijf, P. H., Benezra, R. The cancer biology of whole-chromosome instability. Oncogene. 32 (40), 4727-4736 (2013).
  9. Lara-Gonzalez, P., Taylor, S. S. Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle checkpoint-dependent mitotic arrest. PLoS One. 7 (11), 49041 (2012).
  10. Araujo, A., Baum, B., Bentley, P. The role of chromosome missegregation in cancer development: a theoretical approach using agent-based modelling. PLoS One. 8 (8), 72206 (2013).
  11. Deardorff, M. A., et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 489 (7415), 313-317 (2012).
  12. Chetaille, P., et al. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet. 46 (11), 1245-1249 (2014).
  13. Kaiser, F. J., et al. Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Hum Mol Genet. 23 (11), 2888-2900 (2014).
  14. Snape, K., et al. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet. 43 (6), 527-529 (2011).
  15. Suijkerbuijk, S. J., et al. Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res. 70 (12), 4891-4900 (2010).
  16. Vega, H., et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 37 (5), 468-470 (2005).
  17. Andrews, P. D., Harper, I. S., Swedlow, J. R. To 5D and beyond: quantitative fluorescence microscopy in the postgenomic era. Traffic. 3 (1), 29-36 (2002).
  18. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2 (1), 21-32 (2001).
  19. Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M., Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science. 336 (6078), 220-225 (2012).
  20. Yabe, T., et al. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet. 5 (6), 1000518 (2009).
  21. Hou, F., Zou, H. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell. 16 (8), 3908-3918 (2005).
  22. Ivanov, D., et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol. 12 (4), 323-328 (2002).
  23. Beckouet, F., et al. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol Cell. 39 (5), 689-699 (2010).
  24. Monnich, M., Kuriger, Z., Print, C. G., Horsfield, J. A. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS One. 6 (5), 20051 (2011).
  25. Percival, S. M., et al. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis Model Mech. 8 (8), 941-955 (2015).
  26. Amsterdam, A., Hopkins, N. Retroviral-mediated insertional mutagenesis in zebrafish. Methods Cell Biol. 77, 3-20 (2004).
  27. Amsterdam, A., et al. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci U S A. 101 (35), 12792-12797 (2004).
  28. Jeon, H. Y., Lee, H. Depletion of Aurora-A in zebrafish causes growth retardation due to mitotic delay and p53-dependent cell death. FEBS J. 280 (6), 1518-1530 (2013).
  29. Jeong, K., Jeong, J. Y., Lee, H. O., Choi, E., Lee, H. Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos. Dev Biol. 345 (1), 34-48 (2010).
  30. Bonenfant, D., Coulot, M., Towbin, H., Schindler, P., van Oostrum, J. Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics. 5 (3), 541-552 (2006).
  31. Kwan, K. M., et al. A complex choreography of cell movements shapes the vertebrate eye. Development. 139 (2), 359-372 (2012).
  32. Pilaz, L. J., Silver, D. L. Live imaging of mitosis in the developing mouse embryonic cortex. J Vis Exp. (88), (2014).
  33. Davidson, G., et al. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 438 (7069), 867-872 (2005).
  34. Smith, R. M., et al. Exocytotic insertion of calcium channels constrains compensatory endocytosis to sites of exocytosis. J Cell Biol. 148 (4), 755-767 (2000).
  35. Reid, T. S., Terry, K. L., Casey, P. J., Beese, L. S. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol. 343 (2), 417-433 (2004).
  36. Gerlach, G. F., Morales, E. E., Wingert, R. A. Microbead Implantation in the Zebrafish Embryo. J Vis Exp. (101), e52943 (2015).
  37. Porazinski, S. R., Wang, H., Furutani-Seiki, M. Microinjection of medaka embryos for use as a model genetic organism. J Vis Exp. (46), (2010).
  38. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. (25), (2009).
  39. Sugiyama, M., et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci U S A. 106 (49), 20812-20817 (2009).
  40. Ariga, J., Walker, S. L., Mumm, J. S. Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. J Vis Exp. (43), (2010).
  41. O’Brien, G. S., et al. Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J Vis Exp. (24), (2009).
  42. Maiato, H., Logarinho, E. Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol. 16 (5), 386-394 (2014).
  43. Gorbsky, G. J. Cohesion fatigue. Curr Biol. 23 (22), 986-988 (2013).
  44. Daum, J. R., et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol. 21 (12), 1018-1024 (2011).
  45. Germann, S. M., et al. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. J Cell Biol. 204 (1), 45-59 (2014).
  46. Chan, K. L., North, P. S., Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26 (14), 3397-3409 (2007).
  47. Wuhr, M., Obholzer, N. D., Megason, S. G., Detrich, H. W., Mitchison 3rd, ., J, T. Live imaging of the cytoskeleton in early cleavage-stage zebrafish embryos. Methods Cell Biol. 101, 1-18 (2011).
  48. Rogers, S. L., Rogers, G. C., Sharp, D. J., Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol. 158 (5), 873-884 (2002).
  49. Gascoigne, K. E., Cheeseman, I. M. CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. J Cell Biol. 201 (1), 23-32 (2013).
  50. Scott, E. S., O’Hare, P. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J Virol. 75 (18), 8818-8830 (2001).
  51. Shankaran, S. S., Mackay, D. R., Ullman, K. S. A time-lapse imaging assay to study nuclear envelope breakdown. Methods Mol Biol. 931, 111-122 (2013).
  52. Jao, L. E., Wente, S. R., Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A. 110 (34), 13904-13909 (2013).
  53. Irion, U., Krauss, J., Nusslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 141 (24), 4827-4830 (2014).
  54. Hwang, W. Y., et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 31 (3), 227-229 (2013).
  55. Hruscha, A., et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development. 140 (24), 4982-4987 (2013).
  56. Thomas, H. R., Percival, S. M., Yoder, B. K., Parant, J. M. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One. 9 (12), 114632 (2014).

Play Video

Cite This Article
Percival, S. M., Parant, J. M. Observing Mitotic Division and Dynamics in a Live Zebrafish Embryo. J. Vis. Exp. (113), e54218, doi:10.3791/54218 (2016).

View Video