Summary

腺病毒基因治疗对糖尿病性角膜病变:对伤口愈合和干细胞标记表达的人体器官培养角膜和角膜缘上皮细胞

Published: April 07, 2016
doi:

Summary

An example of adenoviral gene therapy in the human diabetic organ-cultured corneas is presented towards the normalization of delayed wound healing and markedly reduced epithelial stem cell marker expression in these corneas. It also describes the optimization of this process in stem cell-enriched limbal epithelial cultures.

Abstract

该协议的目的是描述分子改变在人类糖尿病性角膜并展示如何能够通过在器官培养的角膜的腺病毒基因治疗得到缓解。糖尿病角膜病是角膜神经和上皮伤口愈合的频繁异常糖尿病的并发症。我们也记录在人类糖尿病几个角膜上皮推测干细胞标记显著改变的表达。为了减轻这些变化,腺病毒的基因治疗用的c-met原癌基因表达的上调和/或蛋白酶基质金属蛋白酶10(MMP-10)和组织蛋白酶F.本疗法的下调成功实施糖尿病角膜伤口加速愈合即使只有角膜缘干细胞室转导。最好的结果是用联合治疗获得。对于标准化的干细胞可能病人移植的例子也提出了优化*的在使用聚阳离子促进干细胞富集的文化基因转导。这种方法不仅可用于选定的基因而且对角膜上皮创伤愈合的其他介质是有用的和干细胞功能。

Introduction

糖尿病患者角膜病变主要导致上皮变性(角膜)和神经(神经病)的变化。它通常是由上皮伤口愈合和角膜神经减少1-4的异常表现。据估计,60%-70%的糖尿病患者有不同的角膜问题1,3。我们的研究已经确定了几个标志物蛋白在人类糖尿病性角膜包括的c-met原癌基因(肝细胞生长因子受体)的下调改变的表达和基质金属蛋白酶10(MMP-10)和组织蛋白酶F 5,6的上调。我们也显著记录在人类糖尿病性角膜下降几个推定上皮干细胞标记物的表达。

在以前的研究中,我们开发了一种基于腺病毒的基因治疗使用人类糖尿病性角膜器官培养系统,该系统示出了伤口愈合缓慢正常化糖尿病改变的标志物的水平,糖尿病标记的变化,和干类似于体外角膜7,8-细胞标记物表达的减少。变化的这个持续性似乎是由于后生代谢存储器9中的存在。该培养体系进一步用于基因治疗。此疗法的目标是从标记选择了与糖尿病角膜( 的c-met原癌基因),或增加的表达(MMP-10和组织蛋白酶F)的任一减少的表达。

腺病毒(AV)疗法在整个器官培养的角膜或只角巩膜周缘隔室使用。这个车厢港口上皮干细胞的更新角膜上皮和积极参与伤口愈合4,10-15。这里,提供了用于正常和糖尿病的人角膜器官培养,上皮伤口愈合,分离和干细胞富集的角膜缘细胞培养物的表征,和腺病毒细胞和角膜转导协议。我们的结果表明,该疗法对糖尿病角膜用于未来可能的移植正常化标志物的表达和伤口愈合的可行性。他们还表明,联合治疗是恢复正常标记图案和上皮的愈合,糖尿病角膜16-18最有效的方式。

Protocol

国家疾病研究交换(NDRI,费城,宾夕法尼亚州)提供的同意验尸的健康和糖尿病人的眼睛和角膜。 NDRI的人体组织收集协议是由管理委员会,并接受卫生监督全国学院批准。这项研究已批准的雪松 – 西奈医学中心机构审查委员会(IRB)豁免协议EX-1055下进行的。合作角膜外科医生,博士。 E. Maguen和Y拉比诺维茨,提供丢弃角巩膜缘干细胞富集角膜上皮的文化隔离。该研究已批准的IRB协议Pro00019393下进行的。 <p cla…

Representative Results

我们以前表明,在角膜器官培养,糖尿病标记物( 例如 ,基底膜蛋白和整联α3β1)的正常和糖尿病角膜之间和伤口愈合中的表达的差异将被保留。此培养系统进行基因治疗,旨在正常化糖尿病改变的标记物,c-Met的MMP-10的水平,以及组织蛋白酶F. 当整个角膜上皮用对AV-CMET或AV-shRNA的对MMP-10或组织蛋白酶F(单独或组合)?…

Discussion

角膜似乎是用于基因治疗的理想组织,由于其表面的位置,其中的基因递送,以及疗效和副作用的评价,是容易的。然而,这种功能强大的方法的临床翻译仍然缓慢,由于对角膜疾病的遗传原因和基因治疗靶24稀少的信息。糖尿病并发症,包括角膜改变可以在本质上,换算成代谢存储器9大多后生。出于这个原因,在糖尿病组织和细胞保持其异常体外 ,并且可以在器官和组?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We gratefully acknowledge financial support by NIH/NEI R01 EY13431 (AVL), CTSI grant UL 1RR033176 (AVL), and grants from the Regenerative Medicine Institute, Cedars-Cedars Medical Center.

Materials

minimum essential medium Thermo Fisher Scientific 11095-080
Optisol-GS  Bausch & Lomb 50006-OPT
ABAM antibiotic-antimycotic mixture Thermo Fisher Scientific 15240062
calf skin collagen  Sigma-Aldrich  C9791
agar, tissue culture grade Sigma-Aldrich  A1296
n-heptanol Sigma-Aldrich  72954-5ML-F
O.C.T. compound  VWR International 25608-930
Dispase II  Roche Applied Science 4942078001
keratinocyte serum-free medium (KSFM)  Thermo Fisher Scientific 17005042
EpiLife medium with calcium Thermo Fisher Scientific MEPI500CA
N2 medium supplement, 100x Thermo Fisher Scientific 17502-048
B27 medium supplement, 50x Thermo Fisher Scientific 17504-044
human keratinocyte growth supplement, 100x Thermo Fisher Scientific S-001-5
trypsin 0.25% – EDTA 0.02% with phenol red Thermo Fisher Scientific 25200056
trypsin 0.25% with phenol red Thermo Fisher Scientific 15050065
soybean trypsin inhibitor  Sigma-Aldrich  T6414
fetal bovine serum Thermo Fisher Scientific 26140079
insulin-transferrin-selenite supplement (ITS) Sigma-Aldrich  I3146-5ML
antibody to keratin 14 Santa Cruz Biotechnology sc-53253
antibody to keratin 15 Santa Cruz Biotechnology sc-47697
antibody to keratin 17 Santa Cruz Biotechnology SC-58726
antibody to ΔNp63α Santa Cruz Biotechnology sc-8609
antibody to PAX6 BioLegend PRB-278P-100
antibody to nidogen-1 R&D Systems MAB2570
antibody to integrin α3β1 EMD Millipore MAB1992
human fibronectin BD Biosciences 354008
human laminin Sigma-Aldrich  L4445
human type IV collagen Sigma-Aldrich  C6745-1ML
adenovirus expressing MMP-10 shRNA Capital BioSciences custom made
adenovirus expressing cathepsin F shRNA Capital BioSciences custom made
adenovirus expressing scrambled shRNA and GFP Capital BioSciences custom made
adenovirus expressing c-met OriGene (plasmid) SC323278
adenovirus expressing GFP KeraFAST FVQ002
sildenafil citrate, 25 mg Pfizer from pharmacy
epidermal growth factor  Thermo Fisher Scientific PHG0311
poly-L-lysine Sigma-Aldrich  P4707
polybrene Sigma-Aldrich  107689-10G
ViraDuctin Cell Biolabs AD-200
ibiBoost ibidi, Germany 50301
phosphate buffered saline (PBS) Thermo Fisher Scientific 10010049
Corning round end spatula  Dow Corning 3005
60-mm petri dishes Thermo Fisher Scientific 174888
Nunc Lab-Tek II multiwell chamber slides  Sigma-Aldrich C6807
200 microliter pipet tips Bioexpress P-1233-200 other suppliers available
inverted microscope  Nikon Diaphot other suppliers/models available
humidified CO2 incubator  Thermo Fisher Scientific 370 (Steri-Cycle) other suppliers/models available
fluorescent microscope Olympus, Japan BX-40 other suppliers/models available
dissecting stereo microscope Leica, Germany S4 E other suppliers/models available

References

  1. Bikbova, G., Oshitari, T., Tawada, A., Yamamoto, S. Corneal changes in diabetes mellitus. Curr Diabetes Rev. 8 (4), 294-302 (2012).
  2. Calvo-Maroto, A. M., Perez-Cambrodí, R. J., Albarán-Diego, C., Pons, A., Cerviño, A. Optical quality of the diabetic eye: a review. Eye (Lond). 28 (11), 1271-1280 (2014).
  3. Tripathy, K., Chawla, R., Sharma, Y. R., Venkatesh, P., Vohra, R. Corneal changes in diabetes mellitus. DOS Times. 20 (5), 55-58 (2015).
  4. Ljubimov, A. V., Saghizadeh, M. Progress in corneal wound healing. Prog Retin Eye Res. 49, 17-45 (2015).
  5. Saghizadeh, M., et al. Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: a possible mechanism of basement membrane and integrin alterations. Am J Pathol. 158 (2), 723-734 (2001).
  6. Saghizadeh, M., et al. Proteinase and growth factor alterations revealed by gene microarray analysis of human diabetic corneas. Invest Ophthalmol Vis Sci. 46 (10), 3604-3615 (2005).
  7. Kabosova, A., Kramerov, A. A., Aoki, A. M., Murphy, G., Zieske, J. D., Ljubimov, A. V. Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Exp Eye Res. 77 (2), 211-217 (2003).
  8. Saghizadeh, M., et al. Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol Vis. 17, 2177-2190 (2011).
  9. Kowluru, R. A., Kowluru, A., Mishra, M., Kumar, B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 48 (Sep), 40-61 (2015).
  10. Lehrer, M. S., Sun, T. T., Lavker, R. M. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 111 (Pt 19), 2867-2875 (1998).
  11. Lu, L., Reinach, P., Kao, W. W. Corneal epithelial wound healing. Exp Biol Med. 226 (7), 653-664 (2001).
  12. Rama, P., et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 363 (2), 147-155 (2010).
  13. Di Girolamo, N., et al. Tracing the fate of limbal epithelial progenitor cells in the murine cornea. Stem Cells. 48 (1), 203-225 (2014).
  14. Amitai-Lange, A., et al. Lineage tracing of stem and progenitor cells of the murine corneal epithelium. Stem Cells. 33 (1), 230-239 (2015).
  15. Di Girolamo, N. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Prog Retin Eye Res. 48 (Sep), 203-225 (2015).
  16. Saghizadeh, M., Kramerov, A. A., Yu, F. S., Castro, M. G., Ljubimov, A. V. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-met gene. Invest Ophthalmol Vis Sci. 51 (4), 1970-1980 (2010).
  17. Saghizadeh, M., et al. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci. 54 (13), 8172-8180 (2013).
  18. Saghizadeh, M., Dib, C. M., Brunken, W. J., Ljubimov, A. V. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res. 129 (Dec), 66-73 (2014).
  19. Hatchell, D. L., et al. Damage to the epithelial basement membrane in the corneas of diabetic rabbits. Arch Ophthalmol. 101 (3), 469-471 (1983).
  20. Chung, J. H., Kim, W. K., Lee, J. S., Pae, Y. S., Kim, H. J. Effect of topical Na-hyaluronan on hemidesmosome formation in n-heptanol-induced corneal injury. Ophthalmic Res. 30 (2), 96-100 (1998).
  21. Saghizadeh, M., et al. Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes. Brain Res Bull. 81 (2-3), 262-272 (2010).
  22. Sareen, D., et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 3 (9), 1002-1012 (2014).
  23. Funari, V. A., et al. Differentially expressed wound healing-related microRNAs in the human diabetic cornea. PLoS One. 8 (12), e84425 (2013).
  24. Mohan, R. R., Rodier, J. T., Sharma, A. Corneal gene therapy: basic science and translational perspective. Ocul Surf. 11 (3), 150-164 (2013).
  25. Liu, J., et al. Different tropism of adenoviruses and adeno-associated viruses to corneal cells: implications for corneal gene therapy. Mol Vis. 14, 2087-2096 (2008).
  26. Thomas, C. E., Ehrhardt, A., Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 4 (5), 346-358 (2003).
  27. Sharma, G. D., He, J., Bazan, H. E. P38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem. 278 (24), 21989-21997 (2003).
  28. Saika, S., et al. Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest Ophthalmol Vis Sci. 45 (1), 100-109 (2004).
  29. Xu, K. P., Li, Y., Ljubimov, A. V., Yu, F. S. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes. 58 (5), 1077-1085 (2009).
  30. Xu, K., Yu, F. S. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci. 52 (6), 3301-3308 (2011).
  31. Takamura, Y., et al. Aldose reductase inhibitor counteracts the enhanced expression of matrix metalloproteinase-10 and improves corneal wound healing in galactose-fed rats. Mol Vis. 19, 2477-2486 (2013).
  32. Byun, Y. S., Kang, B., Yoo, Y. S., Joo, C. K. Poly(ADP-ribose) polymerase inhibition improves corneal epithelial innervation and wound healing in diabetic rats. Invest Ophthalmol Vis Sci. 56 (3), 1948-1955 (2015).
  33. Deng, S. X., et al. Characterization of limbal stem cell deficiency by in vivo laser scanning confocal microscopy: a microstructural approach. Arch Ophthalmol. 130 (4), 440-445 (2012).
  34. Lagali, N., et al. In vivo morphology of the limbal palisades of Vogt correlates with progressive stem cell deficiency in aniridia-related keratopathy. Invest Ophthalmol Vis Sci. 54 (8), 5333-5342 (2013).

Play Video

Cite This Article
Kramerov, A. A., Saghizadeh, M., Ljubimov, A. V. Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-cultured Corneas and Limbal Epithelial Cells. J. Vis. Exp. (110), e54058, doi:10.3791/54058 (2016).

View Video