This publication demonstrates methods for successful sampling and culture of nasal epithelial mucosa from children, and reprogramming these cells to induced Pluripotent Stem Cells (iPSCs).
Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.
ヒトサンプル(hiPSCs)から誘導された多能性幹細胞は、幹細胞研究の急速な発展技術です。彼らは、胚性幹細胞(hESCの)はるかに少ない倫理的、道徳的な欠点1,2との研究に代わるものを提供しています。彼らはヒトES細胞3-5のエピジェネティックに同一ではないですが、hiPSCsは、開発および疾患の表現型をモデル化するためのユニークな方法を提供し、彼らは、疾患状態5-8に関連する組織に由来することができます。生成hiPSCsの新しい方法は、常に移植に適したGMP品質のiPS細胞を作製する方法として、で開始し、また、再プログラミングプロセス6,9-11の適時性と効率性を高めるために最適な細胞型を同定するために探索されています。
気道上皮細胞は、アレルギー性炎症12の開発において重要である、と上皮はIMMUNとの相互作用を介してアレルギー反応と気道リモデリングの主要なドライバですeとの間質細胞。気道上皮は、喘息などの肺疾患の起源および持続性において重要な役割を果たしています。しかし、下気道上皮細胞は、特に健康な対照患者や子どもたちから、臨床の場で得ることは困難です。いくつかの研究からのデータは、大気汚染物質やアレルゲンに対する応答を研究する場合は特に、鼻粘膜から上皮細胞が下気道上皮細胞のための有効かつ実用的なプロキシであることを前提13-20をサポートしています。鼻粘膜は、90%以上の繊毛気道上皮細胞で構成され、それが他の細胞/組織サンプリング技術よりも低侵襲性であるとされ、これらの鼻上皮細胞(NECS)をサンプリングすることは容易に、年齢4または5のように幼い子供にして行うことができますこのような感染20-23のような有害事象のリスクが最小限に関連付けられています。それは、長い間、不必要な、そしてしばしば痛みを伴う気管支鏡。手順なしで健康と病気の両方の子をサンプリングするために迅速かつ簡単な方法を提供しています鎮静を必要と解像度。以前の研究は、喘息の重症度に関連する疾患のサブタイプは鼻粘膜、ならびに喘息の子供から採取した気管支細胞試料の両方で識別することができることを見出しており、2つの組織タイプ間の遺伝子発現は、非ユビキタス遺伝子22の約90%で類似していました、24。 iPS細胞の供給源としては、NECSは、他の頻繁に利用される細胞型に比べて利点を提供します。線維芽細胞は、多くの場合、IPSCを生成するために使用されているが、これらの細胞は容易に皮膚生検から培養することができるが、このプロセスは、典型的には、局所麻酔、切開、および縫合糸を必要とし、感染症のいくつかのリスクと関連しています。したがって、生検のこのタイプの患者からインフォームドコンセントを得ることが25困難な場合があります。線維芽細胞の一つの代替は、末梢血単核細胞(PBMC)です。しかし、小児患者からIPSCを生成するために十分な血液を得ることが困難となります。また、下流APの制限があります線維芽細胞および血液細胞由来のiPS細胞、特定の細胞タイプ5,26、特にそれらの分化能のために襞。したがって、相対的なアクセシビリティとその収集以下の副作用のリスクが低い与えられ、NECSは、小児集団からのIPSCを生成するための理想的な細胞源を表します。
性IPSCは、新規疾患モデルを生成し、人間開発を研究するためのプラットフォームとして、最近多くの注目を受け、パーソナライズされた治療用細胞の潜在的な供給源としています。この技術の全潜在能力を実現することができる前に、リプログラミング過程の分子基盤を解明する必要がありますが、今の内に概説され、このプロトコルおよび手順は、気道曝露に焦点を当てた調査研究を解明し、同様のためのプラットフォームを提供しますiPS細胞が関与する個別化医療の効果を研究します。
いくつかの研究室の共同作業はGENERATIOにつながっています鼻粘膜を採取するだけでなく、NECSを培養し、iPS細胞23に、これらの細胞を再プログラミングするだけでなく、ために成功した技術のn個。この記事では、最適なサンプリング、培養、および再プログラミング条件のためのプロトコルの概要を提供します。
鼻上皮細胞(NECS)気道疾患を研究するためのアクセス可能なプラットフォームであり、NEC-iPS細胞は、疾患の発症、治療および治療1,31,32を探索するエキサイティングな道を提供しています。 NECSは簡単にストレスの多いまたは潜在的に有害な手順6,23なく得ることができます。我々の経験では、このプロトコルで説明したように鼻粘膜のサンプリングは、子供のための採血…
The authors have nothing to disclose.
著者らは、多能性幹細胞機能とシンシナティ小児病院での共焦点イメージングコアを承認したいと思います。この作品は、R21AI119236(HJ)、R21AI101375(HJ)、NIH / NCATS 8UL1TR000077-04(HJ)、U19 AI070412(HJ)と2U19AI70235(GKKH)によってサポートされていました。
15mL conical | Fisher Scientific | 14-959-49D | Protocol Step 1.1. |
BEGM | Lonza | CC-3170 | Protocol Step 1.1. |
Penn/Strep/Fungicide | Life Technologies | 15240-062 | Protocol Step 1.1. |
Penn/Strep | Life Technologies | 15140-122 | Protocol Step 4.a. |
cytosoft cytology brush | Fisher Scientific | 22-263-357 | Protocol Step 1.2. |
trypan blue | Fisher Scientific | MT-25-900-CI | Protocol Step 2.1. |
hemacytometer | Fisher Scientific | 02-671-54 | Protocol Step 2.1. |
PBS | Fisher Scientific | BP2438-4 | Protocol Step 2.2. |
Cytology Funnel Clips | Fisher Scientific | 10-357 | Protocol Step 2.2. |
cytospin funnel | Fisher Scientific | 23-640-320 | Protocol Step 2.2. |
Cytospin 4 | Fisher Scientific | A78300003 | Protocol Step 2.2. |
blank slide | Fisher Scientific | S95933 | Protocol Step 2.2. |
hema 3 stain kit | Fisher Scientific | 22-122-911 | Protocol Step 2.2. |
Bovine Dermal Colagen, type 1 | Life Technologies | A1064401 | Protocol Step 3.2. |
T25 flask | Fisher Scientific | 08-772-45 | Protocol Step 3.3. |
Trypsin | Lonza | CC-5012 | Protocol Step 5.2. |
Trypsin Neutralizing Solution | Lonza | CC-5002 | Protocol Step 5.2. |
Fetal Bovine Serum (FBS), heat sterilized at 65°C for 30min | Sigma-Aldrich | F2442 | Protocol Step 5.5. |
Dimethyl sulfoxide Hybri-Max™, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7% - | Sigma-Aldrich | D2650 | Protocol Step 5.5. |
polycistonic lentivirus* | e.g. Millipore | SCR511 | Protocol Step 6.4. A commercial source of reprogramming vector is listed. We routinely use the 4-in-1 plasmid reported by Voelkel et al (PMID: 20385817) to generate VSV-G-pseudotyped polycistronic reprogramming lentivirus in-house. This plasmid can be obtained by contacting |
polybrene | Santa Cruz Biotechnology | sc-134220 | Protocol Step 6.4. |
Irradiated CF1 MEFs | GlobalStem | GSC-6301G | Protocol Step 6.4. |
hESC media | See recipe included in protocol | Protocol Step 6.11. | |
SB431542 | Stemgent | 04-0010 | Protocol Step 6.11. |
PD0325901 | Stemgent | 04-0006 | Protocol Step 6.11. |
Thiazovivin | Stemgent | 04-0017 | Protocol Step 6.11. |
hESC-qualified Matrigel | BD Biosciences | 354277 | Protocol Step 6.13. |
Corning plate, 6 well | Fisher Scientific | 08-772-1B | Protocol Step 6.13. |
mTeSR1 | StemCell | 5850 | Protocol Step 6.13. |
250mL disposable filter flask (0.22µm) | Fisher | SCGP-U02-RE | |
dispase | StemCell | 7923 | Protocol Step 7.3. |
DMEM/F12 | Life Technologies | 11320-033 | Protocol Step 7.3. |
cell lifter | Fisher Scientific | 08-100-240 | Protocol Step 7.4. |
hESC Media** | Protocol Step 6.11. components should be mixed and then filter sterilized. Media can be kept at 4°C for up to two weeks. When warming media, do not leave at 37°C longer than 15 min |
||
DMEM-F12 50/50 media | Invitrogen | 11330-032 | Final Concentration |
KO replacement serum (KO-SR) | Invitrogen | 10828-028 | 0.2 |
200mM L-glutamine | Invitrogen | 25030-081 | 1mM |
55mM ß-mercaptoethanol | Invitrogen | 21985-023 | 0.1mM |
100x non-essential amino acids | Invitrogen | 11140-050 | 1x |
2ug/mL Basic-Fibroblast Growth Factor (b-FGF) | Invitrogen | 13256-029 | 4ng/mL |