A protocol is presented for the synthesis and preparation of nanoparticles consisting of electroactive polymers.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).
Elektroaktive Polymere die Eigenschaften (Farbe, Leitfähigkeit, Reaktivität, Volumen, etc.) ändern, in Gegenwart eines elektrischen Feldes. Die schnelle Schaltzeiten, Einstellbarkeit, Langlebigkeit und leichten Eigenschaften der elektroaktiven Polymere sind in viele vorgeschlagenen Anwendungen, einschließlich der alternativen Energie, Sensoren, elektrochrome und biomedizinische Geräte geführt. Elektroaktive Polymere sind potentiell als flexible, leichte Batterie und Kondensator-Elektroden. 1 Anwendungen der elektroaktiven Polymere in elektrochromen Vorrichtungen sind blendMinderungsSysteme für Gebäude und Autos, Sonnenbrillen, Schutzbrillen, optische Speichergeräte und Smart Textiles. 2-5 Smart-Fenster kann der Energiebedarf durch die Blockade spezifischer Wellenlängen des Lichts auf Abruf und zum Schutz der Innenräume von Häusern und Autos zu reduzieren. Intelligente Textilien können in der Kleidung verwendet werden, um zum Schutz vor UV-Strahlung. 6 Elektroaktive Polymere haben also begonnen, bei medizinischen Vorrichtungen verwendet werden. Unter elektroaktive Polymere in biomedizinischen Vorrichtungen verwendet, Polypyrrol (PPy), Polyanilin (PANI) und Poly (3,4-ethylendioxythiophen) (PEDOT) gehören zu den am häufigsten. Beispielsweise werden diese Typen von Polymeren allgemein als Wandler in Biosensorvorrichtungen benutzt 7 Anwendungen in therapeutischen Abgabe wurden ebenfalls als vielversprechend erwiesen. Studien haben die Freisetzung von Medikamenten und therapeutischen Proteinen aus Vorrichtungen aus elektroaktiven Polymeren, hergestellt jüngerer demonstriert. 8-12 wurden elektroaktive Polymere als therapeutische Mittel in photothermische Therapie verwendet worden. 13-15 In photothermische Therapie muss der photothermischen Mitteln Licht im nahen absorbieren -Infrarot (NIR) Region (~ 700-900 nm), die auch als therapeutische Fenster, wo Licht die maximale Eindringtiefe in Gewebe, in der Regel bis zu 1 cm. 16,17 In diesem Bereich ist bekannt, biologische Chromophore wie Hämoglobin haben oxygeniertem Hämoglobin, Lipiden und Wasser wenig bis keinenAbsorption, die Licht ermöglicht, leicht durchdringen. Wenn photothermische Mittel absorbieren Licht in diesem therapeutischen Fensters wird die Lichtenergie, um photothermische Energie umgewandelt.
Irvin und Mitarbeiter haben zuvor berichtet alkoxysubstituierten Bis-EDOT Benzol Monomere, die unter Verwendung von Negishi-Kupplung synthetisiert. 18 Negishi-Kupplung ist eine bevorzugte Methode für die Kohlenstoff-Kohlenstoff-Bindungsbildung. Dieses Verfahren hat viele Vorteile, einschließlich der Verwendung von zinkorganischen Zwischenprodukte, die weniger toxisch sind und in der Regel höhere Reaktivität aufweisen als andere metallorganische Verbindungen eingesetzt. 19,20 organischer Verbindungen sind auch mit einer Vielzahl von funktionellen Gruppen an den Organohalogeniden kompatibel. 20 in der Negishi-Kupplungsreaktion, ein Organohalogenid und Organometall werden durch die Verwendung eines Palladium (0) -Katalysators 20 gekoppelt ist. In der hier vorgestellten Arbeit wird diese Kreuzkupplungsverfahren zur Synthese von 1,4-Dialkoxy-2,5-bis genutzt ( 3,4-ethylenedioxythienyl) benzene (Bedot-B (OR) 2) Monomeren. Diese Monomere können dann leicht elektrochemisch oder chemisch polymerisiert werden, um Polymere, die vielversprechende Kandidaten für die Verwendung in biomedizinischen Anwendungen ergeben.
Herkömmliche Verfahren zur Herstellung von kolloidalen, polymeren Suspensionen in wässrigen Lösungen für biomedizinische Anwendungen beinhalten typischerweise die Auflösung des Massenpolymeren gefolgt von Nanopräzipitation oder Emulsion-Lösungsmittelverdampfungsverfahren. 21,22 Um NPs Poly (Bedot-B (OR) 2) , ein Bottom-up-Ansatz ist hier gezeigt, in der die nationalen Parlamente werden über in situ Emulsionspolymerisation synthetisiert. Die Emulsionspolymerisation ist ein Prozess, der leicht skalierbar ist und eine relativ schnelle Methode zur NP Vorbereitung. 22 Studien mit Emulsionspolymerisation NPs anderer elektroaktive Polymere herzustellen, sind für PPy und PEDOT gemeldet. 15,23,24 PEDOT NPs beispielsweise Verwendung Sprühemulsion p sind vorbereitetolymerization. 24. Dieses Verfahren ist nur schwer zu reproduzieren, und in der Regel ergibt größer Mikrometergrße Teilchen. Die in diesem Artikel beschriebenen Protokoll untersucht die Verwendung von einem Drop-Beschallungsverfahren reproduzierbar herzustellen 100-nm-Polymer-Nanopartikel.
In diesem Protokoll elektroPolymere auf Licht im NIR-Bereich ähnlich wie zuvor berichtet Poly absorbieren (Bedot-B (OR) 2) synthetisiert und charakterisiert, um ihr Potential in elektrochromen Vorrichtungen und als PTT Mittel demonstrieren. Zuerst wird das Protokoll für die Synthese der Monomere über Negishi-Kupplung beschrieben. Die Monomere werden unter Verwendung von NMR und UV-Vis-NIR-Spektroskopie charakterisiert. Die Herstellung von NP Kolloidsuspensionen über oxidative Emulsionspolymerisation in wässrigen Medien ist ebenfalls beschrieben. Das Verfahren beruht auf einer bereits von Han et al., Die den verschiedenen Monomeren angewendet wird beschriebene zweistufige Emulsionspolymerisationsverfahren basiert. Ein Zwei-Tensidsystemverwendet, um die NP Monodispersität steuern. Eine Zelllebensfähigkeitstest wird verwendet, um cytocompatibility der NPs zu bewerten. Schließlich wird das Potential dieser Nanopartikel als PTT Wandler wirken durch Bestrahlung mit einem NIR-Laser nachgewiesen.
In dieser Arbeit wurden elektroaktiven Polymer-Nanopartikel als potenzielle PTT Agenten zur Behandlung von Krebs synthetisiert. Die Herstellung der Nanopartikel beschrieben, beginnend mit der Synthese der Monomere, gefolgt von Emulsionspolymerisation. Während die Herstellung von Nanopartikeln mit elektroaktiven Polymeren wie EDOT und Pyrrol zuvor beschrieben worden ist, beschreibt dieses Dokument die Herstellung von polymeren Nanopartikeln, beginnend mit einzigartigen ausgedehnte Konjugation Monomere, die zeigen, dass …
The authors have nothing to disclose.
Diese Arbeit wurde zum Teil durch die Texas Emerging Technology Fund (Startup, um TB), der Texas State University Research Enhancement Program, der Texas State University Doctoral Research Fellowship (TC), der NSF Partnerschaft für Bildung und Forschung in der Material (PREM finanziert, DMR-1205670), The Welch Foundation (AI-0045), und die National Institutes of Health (R01CA032132).
2 mm diameter platinum working electrode | CH Instruments | CH102 | Polished using very fine sandpaper |
3,4-ethylenedioxythiophene | Sigma-Aldrich | 483028 | Purified by vacuum distillation |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 98% | Alfa Aesar | L11939 | |
505 Sonic Dismembrator | Fisher Scientific™ | FB505110 | 1/8 “ tip and rated at 500 watts |
808 nm laser diode | ThorLabs | L808P1WJ | Rated at 1 W |
Acetonitrile anhydrous 99% | Acros | 61022-0010 | |
Avanti J-26 XPI | Beckman Coulter | 393127 | |
Bromohexane 98% | MP Biomedicals | 202323 | |
Dialysis (100,000) MWCO | SpectrumLabs | G235071 | |
Dimethyl sulfoxide 99% (DMSO) | BDH | BDH1115 | |
Dimethylformamide anhydrous (DMF) 99% | Acros | 326870010 | |
Dodecyl benzenesulfonate (DBSA) | TCI | D0989 | |
Dulbecco’s modified eagle medium (DMEM) | Corning | 10-013 CV | |
EMS 150 TES sputter coater | Electron Microscopy Sciences | ||
Ethanol (EtOH) 100% | BDH | BDH1156 | |
ethyl 4-bromobutyrate (98%) | Acros | 173551000 | |
Ethyl acetate 99% | Fisher | UN1173 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Helios NanoLab 400 | FEI | ||
Hexane | Fisher | H306-4 | |
Hydrochloric acid (HCl) | Fisher | A142-212 | |
Hydroquinone 99.5% | Acros | 120915000 | |
Hydrozine anhydrous 98% | Sigma-Aldrich | 215155 | |
Indium tin oxide (ITO) coated galss | Delta Technologies | CG-41IN-CUV | 4-8 Ω/sq |
Iron chloride 97% FeCl3 | Sigma-Aldrich | 157740 | |
Magnesium sulfate (MgSO4) | Fisher | 593295 | Dried at 100 oC |
SKOV-3 | ATCC | HTB-26 | |
Methanol | BDH | BHD1135 | |
n-Butlithium (2.5 M) | Sigma-Aldrich | 230707 | Pyrophoric |
Poly(styrenesulfonate-co-malic acid) (PSS-co-MA) 20,000 MW | Sigma-Aldrich | 434566 | |
Potassium carbonate | Sigma-Aldrich | 209619 | Dried at 100 oC |
Potassium hydroxide | Alfa Aesar | A18854 | |
Potassium iodide | Fisher | P410-100 | |
RO-5 stirplate | IKA-Werke | ||
SC4000 IR camera | FLIR | ||
Synergy H4 Hybrid Reader | Biotek | ||
Tetrabutylammonium perchlorate (TBAP) 99% | Sigma-Aldrich | 3579274 | Purified by recrystallization in ethyl acetate |
Tetrahydrofuran anhydrous (THF) 99% | Sigma-Aldrich | 401757 | |
tetrakis(triphenylphosphine) palladium(0) |
Sigma-Aldrich | 216666 | Moisture sensitive |
Thermomixer | Eppendorf | ||
USB potentiostat/galvanostat | WaveNow | AFTP1 | |
Zetasizer Nano Zs | Malvern | Optical Arrangment 175o | |
Zinc chloride (1 M) ZnCl2 | Acros | 370057000 |