A protocol is presented for the synthesis and preparation of nanoparticles consisting of electroactive polymers.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).
Электроактивные полимеры изменить свои свойства (цвета, проводимость, реактивность, объем и т.д.) в присутствии электрического поля. Быстрые времена переключения, перестройки частоты, долговечность и легкий характеристики электроактивных полимеров привели к многочисленным предлагаемых приложений, в том числе альтернативной энергетики, датчиков, Electrochromics и биомедицинских устройств. Электроактивные полимеры потенциально полезными в качестве гибких, легких батареи и электродов конденсаторов. 1 Приложения электроактивных полимеров в электрохромных устройств включают в себя системы антиивобликовый для зданий и автомобилей, солнцезащитные очки, защитные очки, оптических запоминающих устройств и смарт-тканей. 2-5 Умные окна могут снизить энергетические потребности блокируя определенные длины волн света по требованию и защиты интерьеры домов и автомобилей. Умные текстиль можно использовать в одежде, чтобы помочь защитить от УФ-излучения. 6 Электроактивные полимеры имеют ALSО начали использовать в медицинских устройствах. Среди электроактивных полимеров, используемых в биомедицинских устройств, полипиррол (PPy), полианилин (ПАНИ), и поли (3,4-этилендиокситиофен) (PEDOT) являются одними из наиболее распространенных. Например, эти типы полимеров обычно используются в качестве преобразователей в биосенсора устройств 7 Применение в терапевтической доставки также показали обещание. исследования показали, высвобождение лекарственных средств и терапевтических белков из устройств, изготовленных из электроактивных полимеров. 8-12 Совсем недавно, электроактивных полимеров были использованы в качестве терапевтических средств при лечении фототермической. 13-15 В фототермической терапии, фототермические агенты должны поглощать свет в ближнем -Инфракрасный (БИК) области (~ 700-900 нм), также известный как терапевтическое окно, в котором свет имеет максимальную глубину проникновения в ткани, как правило, до 1 см. 16,17 В этом диапазоне, биологические хромофоры, такие как гемоглобин , оксигемоглобина, липиды, и вода имеют мало к неПоглощение, которая позволяет свету легко проникать. При фототермические агенты поглощают свет в этом терапевтическое окно, то фотоэнергетических преобразуется в фототермической энергии.
Ирвин с сотр, ранее сообщалось, алкокси-замещенную бис-Edot бензола мономеры, которые были синтезированы с использованием Negishi сцепление. 18 Негиши муфты является предпочтительным способом для образования углерод-углеродной связи. Этот способ имеет много преимуществ, в том числе использование промежуточных цинкорганических, которые менее токсичны и имеют тенденцию к более высокой реакционной чем другие металлоорганические используется. 19,20 Цинкорганические соединения также совместимы с широким спектром функциональных групп на organohalides. 20 в Негиши реакцию сочетания, А.Н. organohalide и металлорганическое соединены посредством использования палладия (0) катализатора. 20 В работе, представленной в данном документе, этот метод кросс муфта используется в синтезе 1,4-диалкокси-2,5-бис ( 3,4-ethylenedioxythienyl) бензолNE (BEDOT-B (OR) 2) мономеров. Эти мономеры могут быть легко полимеризуется электрохимически или химически с образованием полимеров, которые являются перспективными кандидатами для использования в биомедицинских применений.
Обычные способы получения коллоидных суспензий полимерных в водных растворах для биомедицинских применений обычно включают растворение блочных полимеров с последующим nanoprecipitation или эмульсии растворитель методов испарения. 21,22 Для получения NPS поли (BEDOT-B (OR) 2) , снизу вверх подход демонстрируется здесь, где наночастицы синтезируются с помощью на месте эмульсионной полимеризации. Эмульсионная полимеризация представляет собой процесс, который легко масштабируется и является относительно быстрым способом получения НП. 22 Исследования с использованием эмульсионной полимеризации для получения NPS других электроактивных полимеров были зарегистрированы для Ppy и PEDOT. 15,23,24 PEDOT наночастицы, например, были получены с использованием спрей эмульсии рolymerization. 24 Этот метод трудно воспроизвести, и, как правило, приводит к более крупные, микронных размеров частиц. Протокол, описанный в этой статье исследует использование метода раскрывающемся ультразвуком воспроизводимо приготовить 100 нм полимерных NPS.
В этом протоколе, электроактивные полимеры с учетом поглощают свет в ближней инфракрасной области спектра, похожий на ранее сообщалось поли (BEDOT-B (OR) 2) синтезируются и характеризуется продемонстрировать свой потенциал в электрохромных устройств и, как PTT агентов. Во-первых, протокол для синтеза мономеров через Негиши связи описан. Мономеры характеризуются использованием ЯМР и УФ-VIS-NIR спектроскопии. Подготовка НП коллоидных суспензий с помощью полимеризации окислительного эмульсии в водных средах также описано. Методика основана на процессе эмульсионной полимеризации двухступенчатой описанной ранее Хан и др., Которые наносят на различных мономеров. Система двух поверхностно-используется для управления монодисперсность NP. Жизнеспособность клеток анализ используется для оценки cytocompatibility из наночастиц. Наконец, потенциал этих наночастиц выступать в качестве PTT преобразователей продемонстрирована путем облучения с NIR лазера.
В этой работе, электроактивные полимерные наночастицы были синтезированы в качестве потенциальных агентов PTT для лечения рака. Получение наночастиц описан, начиная с синтеза мономеров с последующей эмульсионной полимеризации. В то время как подготовка национальных парков с использо?…
The authors have nothing to disclose.
Эта работа была частично финансируется Техас Emerging Technology Fund (Startup ТБ), Государственного университета исследовательской программы Повышение Техас, Техас государственного университета докторской диссертации стипендий (в ТЦ), в NSF партнерства для исследований и образования в области материаловедения (PREM, DMR-1205670), The Уэлш Фонд (АИ-0045), и Национальные институты здравоохранения (R01CA032132).
2 mm diameter platinum working electrode | CH Instruments | CH102 | Polished using very fine sandpaper |
3,4-ethylenedioxythiophene | Sigma-Aldrich | 483028 | Purified by vacuum distillation |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 98% | Alfa Aesar | L11939 | |
505 Sonic Dismembrator | Fisher Scientific™ | FB505110 | 1/8 “ tip and rated at 500 watts |
808 nm laser diode | ThorLabs | L808P1WJ | Rated at 1 W |
Acetonitrile anhydrous 99% | Acros | 61022-0010 | |
Avanti J-26 XPI | Beckman Coulter | 393127 | |
Bromohexane 98% | MP Biomedicals | 202323 | |
Dialysis (100,000) MWCO | SpectrumLabs | G235071 | |
Dimethyl sulfoxide 99% (DMSO) | BDH | BDH1115 | |
Dimethylformamide anhydrous (DMF) 99% | Acros | 326870010 | |
Dodecyl benzenesulfonate (DBSA) | TCI | D0989 | |
Dulbecco’s modified eagle medium (DMEM) | Corning | 10-013 CV | |
EMS 150 TES sputter coater | Electron Microscopy Sciences | ||
Ethanol (EtOH) 100% | BDH | BDH1156 | |
ethyl 4-bromobutyrate (98%) | Acros | 173551000 | |
Ethyl acetate 99% | Fisher | UN1173 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Helios NanoLab 400 | FEI | ||
Hexane | Fisher | H306-4 | |
Hydrochloric acid (HCl) | Fisher | A142-212 | |
Hydroquinone 99.5% | Acros | 120915000 | |
Hydrozine anhydrous 98% | Sigma-Aldrich | 215155 | |
Indium tin oxide (ITO) coated galss | Delta Technologies | CG-41IN-CUV | 4-8 Ω/sq |
Iron chloride 97% FeCl3 | Sigma-Aldrich | 157740 | |
Magnesium sulfate (MgSO4) | Fisher | 593295 | Dried at 100 oC |
SKOV-3 | ATCC | HTB-26 | |
Methanol | BDH | BHD1135 | |
n-Butlithium (2.5 M) | Sigma-Aldrich | 230707 | Pyrophoric |
Poly(styrenesulfonate-co-malic acid) (PSS-co-MA) 20,000 MW | Sigma-Aldrich | 434566 | |
Potassium carbonate | Sigma-Aldrich | 209619 | Dried at 100 oC |
Potassium hydroxide | Alfa Aesar | A18854 | |
Potassium iodide | Fisher | P410-100 | |
RO-5 stirplate | IKA-Werke | ||
SC4000 IR camera | FLIR | ||
Synergy H4 Hybrid Reader | Biotek | ||
Tetrabutylammonium perchlorate (TBAP) 99% | Sigma-Aldrich | 3579274 | Purified by recrystallization in ethyl acetate |
Tetrahydrofuran anhydrous (THF) 99% | Sigma-Aldrich | 401757 | |
tetrakis(triphenylphosphine) palladium(0) |
Sigma-Aldrich | 216666 | Moisture sensitive |
Thermomixer | Eppendorf | ||
USB potentiostat/galvanostat | WaveNow | AFTP1 | |
Zetasizer Nano Zs | Malvern | Optical Arrangment 175o | |
Zinc chloride (1 M) ZnCl2 | Acros | 370057000 |