Summary

SLP1聚合物和单层从金交互<em> Lysinibacillus球形</em> JG-B53 - QCM-D,ICP-MS和原子力显微镜的工具生物分子金属研究

Published: January 19, 2016
doi:

Summary

To obtain basic information on the sorption and recycling of gold from aqueous systems the interaction of Au(III) and Au(0) nanoparticles on S-layer proteins were investigated. The sorption of protein polymers was investigated by ICP-MS and that of proteinaceous monolayers by QCM-D. Subsequent AFM enables the imaging of the nanostructures.

Abstract

In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis 1 or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers 2-5, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding.

The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces.

Introduction

由于越来越多地使用黄金数的应用,如电子,催化剂,生物传感器,或医疗器械,这种贵金属的需求增长在过去几年的时间内6-9。黄金以及许多其他的贵金属和重金属释放到环境中,通过工业废水稀的浓度,通过采矿活动,以及废物处理7,8,10,虽然大多数环境的污染较重或贵金属是一个持续的过程主要是由于科技活动。这导致自然生态系统的一个显著干扰并且可能潜在地威胁人类健康9。了解这些负面结果促进寻求新的技术来去除污染的生态系统和改善金属的工业废水回收金属。像沉淀或离子交换行之有效的物理 – 化学方法不是那么有效,尤其是在高LY稀释溶液7,8,11。生物吸附,无论是与活的或死的生物质,是污水处理10,12有吸引力的选择。使用这样的生物材料可以减少有毒化学品的消耗量。许多微生物已经描述累积或固定金属。例如,Lysinibacillus球形的细胞(L.球形 )JG-A12显示高结合能力的贵金属例如钯(Ⅱ),铂(II),金(III)和其他有毒金属如铅(II)的或U(Ⅵ)4,13, 巨大芽孢杆菌的为铬(VI)14细胞, 酿酒酵母的铂(II)和Pd(II)的15,小球藻俗为金细胞(Ⅲ)和U(Ⅵ)16 17。以前金属如金的结合(Ⅲ),钯(Ⅱ),和Pt(II)中也已报道了脱硫脱硫弧菌 18L.球形 JG-B53 19,20。然而,没有人升微生物结合大量的金属及其应用为吸附材料有限12,21。此外,金属结合能力取决于不同的参数例如细胞组合物中,所用的生物成分或环境和实验条件(pH,离子强度,温度等)。分离的细胞壁片段22,23的研究,如膜脂质,肽聚糖,蛋白质,或其它部件,有助于理解该金属结合复合构成的全细胞8,21的处理。

该电池组件在这项研究集中于有S层蛋白。 S-层蛋白是许多细菌和古细菌的外细胞膜的部分,它们构成约15 – 20%的这些微生物的总蛋白质量的。作为第一接口的环境中,这些细胞的化合物强烈地影响细菌吸着性质3。 S-层蛋白分子量范围从40到几百kDa的的是在细胞内产生的,但外被组装在那里他们能够形成层上的脂膜或聚合细胞壁成分。一旦分离,几乎所有的S-层蛋白质具有的固有属性自发自组装在悬浮液中,在界面处,或在表面上形成的平面的或管状结构3。蛋白质单层的厚度取决于细菌,是一个范围为5内- 25纳米24。在一般情况下,所形成的S-层蛋白结构可具有一倾斜(P1或P2),正方形(P4),或六边形(P3P6)对称性为2.5晶格常数至35nm 3,24。晶格的形成似乎是在许多情况下,依赖于二价阳离子和主要对Ca 2+ 25,26,拉夫,J。等。 S层基纳米复合材料为在基于蛋白质的工程化纳米结构的工业应用。 (编辑蒂亚娜Z.树丛和Aitziber L. Cortajarena)(施普林格,2016(提交))。尽管如此,完整的反应级联,尤其是二价阳离子如Ca 2+和Mg 2+单体折叠,单体-单体相互作用,晶格的形成,和不同的金属的作用,仍然没有完全了解。

革兰氏阳性菌株L.球形 JG-B53 27(从后新的进化分类球形芽孢杆菌改名),从铀矿开采废料堆“哈伯兰”(约汉格奥尔根斯塔特,萨克森,德国)4,28,29隔离。其功能S-层蛋白(SLP1)具有一个正方形晶格,116 kDa的30的分子量,并在活细菌细胞31的厚度≈10纳米。在以往的研究中, 在体外形成一个封闭的和稳定的蛋白质层的厚度为约10nm,在不到10分钟19达到了。相关应变L.球形 JG-A12,还从“哈伯兰”桩一个分离物,具有高的金属结合能力和其分离的S层蛋白已经显示出对等贵金属的Au具有高的化学和机械稳定性和良好的吸附速率(Ⅲ),铂(II),和Pd(II)的4,32,33。这种贵金属的结合是或多或少特异于一些金属和取决于官能团的聚合物的外和内表面蛋白,并在其孔中,离子强度的可用性,和pH值。由蛋白质有关的官能团为金属相互作用是COOH-,NH 2 – ,OH,PO 4 ,SO 4 – , – SO-和。原则上,金属结合的能力打开了广泛的应用, 拉夫,J。等光谱S层基纳米复合材料为在基于蛋白质的工程化纳米结构的工业应用。 (编辑蒂亚娜Z.树丛和Aitziber L. Cortajarena)(施普林格2016(提交))。 例如,作为用于去除或回收biosorptive组件溶解有毒或有价金属,合成或定期结构的金属纳米颗粒(纳米颗粒)的催化,以及其他生物工程材料,如生物传感层3,5,18,33的定义沉积模板。规则排列的NP阵列状的Au(0)-nps可用于主要应用范围从分子电子学和生物传感器,超高密度存储设备,和催化剂对CO氧化34-37。这样的应用程序以及这些材料的智能设计的发展,就必须的基本金属绑定机制有了更深的了解。

一个先决条件,例如生物基材料的发展是可靠的实施的生物分子和技术表面38,39之间的界面层的。例如,聚电解质组装有层-层(层层)技术40,41已被用作用于S层蛋白39的重结晶的界面层</SUP>。这样的接口提供了一个比较简单的方法,可重复和定量的方式进行蛋白质涂层。通过进行不同的实验有和没有修改与粘合剂的启动子,有可能做出关于涂层动力学,稳定性层,以及金属与生物分子19,42,拉夫,J。等人的相互作用语句。 S层基纳米复合材料为在基于蛋白质的工程化纳米结构的工业应用。 (编辑蒂亚娜Z.树丛和Aitziber L. Cortajarena)(施普林格,2016年(提交))。然而,蛋白质的吸附和蛋白质表面相互作用的复杂的机制尚未完全了解。特别是在构象,图案方向和涂层密度信息仍下落不明。

石英晶体微量天平耗散监测(QCM-D)的技术已引起关注,在近年来作为用于研究蛋白质的吸附,涂层动力学的工具,和相互作用的亲正如事实上纳米尺度19,43-45。此技术允许质量吸附在实时的详细检测,并且可以作为对蛋白质晶格19,20,42,46-48蛋白自组装过程和功能分子偶合的一个指标。另外,QCM-D测量开来研究金属的互动过程与天然生物条件下,蛋白质层的可能性。在最近的研究中,在S-层蛋白质的与选定的金属,如铕的相互作用(Ⅲ),金(Ⅲ),钯(Ⅱ),和Pt(II)中已研究了的QCM-D 19,20。吸附的蛋白质层可以作为革兰氏阳性细菌的细胞壁的简化模型。这种单一组分的研究有助于金属的相互作用有更深的了解。然而,仅仅QCM-D实验不允许有关表面结构和金属蛋白的影响报表。其它技术是必需的,以获得这样的信息。一个POS上的结构特性sibility用于成像的生物纳米结构和获取信息是原子力显微镜(AFM)。

所呈现的研究的目的是调查的金(Au(III)和Au(0)-nps)到S层蛋白质的吸附,在L的特定SLP1 球形 JG-B53。 5.0使用ICP-MS和使用QCM-D固定的S-层 – 悬浮的蛋白质上一批规模2.0的pH范围内进行了实验。此外,关于晶格稳定性金属盐溶液的影响进行了研究与随后AFM研究中。这些技术的组合,有助于更好地理解在体外金属的相互作用过程中为更多地了解关于结合特定金属的亲和力对整个细菌细胞活动的工具。这些知识不仅是适用的过滤材料的发展为金属环保的回收和再保护的关键源49,同时也为高度有序的金属纳米颗粒关于各种技术应用的阵列的发展。

Protocol

1.微生物和培养条件注:所有实验均在无菌条件下完成的L。球形 JG-B53是从低温保存的文化29,30获得。 转印低温保存的净化台下培养(1.5毫升)至300毫升无菌营养肉汤(NB)媒体(3克/升肉提取物,5克/升胨,10克/升NaCl)中。之后搅拌在30℃的溶液进行至少6小时,以获得预培养种植。 培育在NB培养基需氧条件下的细菌在pH = 7.0,30℃下,在70μL的缩放?…

Representative Results

培养微生物和SLP1表征 细菌生长的记录的数据表示在指数生长期的末尾在约5小时。以前的研究表明,SLP1可以从此点收获(4.36克/升湿生物量(≈1.45克/升(BDW))与最大收率19中分离出来。然而,培养通过使用定义的媒体组件或优化补料分批培养策略将导致更高的生物量产率,这是不可剥夺了使用高含量的…

Discussion

在这项工作中研究了Au构成的结合S-层蛋白使用的不同的分析方法的组合进行了研究。特别是,Au构成的结合是非常有吸引力的,不仅对于Au中从采矿水域或处理溶液的回收,而且还用于材料例如,感觉表面的结构。对于在Au相互作用的研究(金(Ⅲ)和Au(0)-nps)悬浮和重结晶SLP1的单层,该蛋白质必须被隔离。因此,本研究表明培育成功的革兰氏阳性细菌菌株L的球形 JG-B53?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

目前的工作是部分由BMWI和BMBF项目“Aptasens”(BMBF / DLR 01RB0805A)资助的IGF-项目“S-筛”(490 ZBG / 1)资助。特别感谢的Tobias J.半滑舌鳎的宝贵帮助,在原子力显微镜的研究和埃里克V.斯通读取稿件为以英语为母语。此外,该论文的作者要感谢艾琳里特和萨布丽娜Gurlit(从研究所的资源生态为ICP-MS测定的援助),曼加沃格尔,南希·昂格尔,卡伦E. Viacava和亥姆霍兹研究所生物技术组佛莱堡的资源技术。

Materials

equiment and software
Bioreactor, Steam In Place 70L Pilot System Applikon Biotechnology, Netherlands Z6X Including dO2, pH sensors of Applikon Biotechnology and BioXpert software V2
Noninvasive Biomass Monitor BugEye 2100 BugLab, Concord (CA), USA Z9X
Spectrometer Ultrospec 1000 Amersham Pharmacia Biotech, Great Britain 80-2109-10 Company now GE Healthcare Life Sciences
MiniStar micro centrifuge VWR, Germany 521-2844 For centrifugation of cultivation samples
Research system microscope BX-61 Olympus Germany LLC, Germany 037006 Microscope in combination with imaging software
Cell^P (version 3.1) Olympus Soft Imaging Solutions LLC, Münster, Germany together with microscope
Powerfuge Pilot Separation System Serie 9010-S Carr Centritech, Florida, USA 9010PLT For biomasse harvesting
T18 basic Ultra Turrax IKA Labortechnik, Germany 431-2601 For flagella removal and sample homogenization
Sorvall Evolution RC Superspeed Centrifuge Thermo Fisher Scientific, USA 728411 Used within protein isolation
Mobile high shear fluid processor, M-110EH-30 Pilot Microfluidics, Massachusetts, USA M110EH30K Used for cell rupture
Alpha 1-4 LSC Freeze dryer Martin Christ Freeze dryers LLC, Osterode, Germany 102041
UV-VIS spectrophotometry (NanoDrop 2000c) Thermo Fisher Scientific, USA 91-ND-2000C-L For determination of protein concentration
Mini-PROTEAN vertical electrophoresis chamber Bio-Rad Laboratories GmbH, Munich, Germany 165-3322 For SDS-PAGE
VersaDoc Imaging System 3000 Bio-Rad Laboratories GmbH, Munich, Germany 1708030 Used for imaging of SDS-PAGE gels
ICP-MS Elan 9000 PerkinElmer, Waltham (MA), USA N8120536 For determination of metal concentration
Zetasizer Nano ZS Malvern Instruments, Worcestershire United Kingdom ZEN3600 For determination of nanoparticle size
Q-Sense E4 device  Q-Sense AB, Gothenburg, Sweden QS-E4 ordered via LOT quantum design (software included with E4 platform)
Q-Soft 401 (data recording) Q-Sense AB, Gothenburg, Sweden
Q-Tools 3 (data evaluation and modelling) Q-Sense AB, Gothenburg, Sweden
QCM-D flow modules QFM 401  Q-Sense AB, Gothenburg, Sweden QS-QFM401 ordered via LOT quantum design
QSX 303 SiO2 piezoelectric AT-cut quartz sensors Q-Sense AB, Gothenburg, Sweden QS-QSX303 ordered via LOT quantum design
Ozone cleaning chamber Bioforce Nanoscience, Ames (IA), USA QS-ESA006 ordered via LOT quantum design
Atomic Force Microscope MFP-3D Bio AFM Asylum Research, Santa Barbara (CA), USA MFP-3DBio AFM measurements and imaging software
Asylum Research AFM Software AR Version 120804+1223 Asylum Research, Santa Barbara (CA), USA imaging software included in Cat. No. MFP-3DBio
Igor Version Pro 6.3.2.3 Software WaveMetrics, Inc., USA imaging software included in Cat. No. MFP-3DBio
BioHeater Asylum Research, Santa Barbara (CA), USA Bioheater Sample heater for AFM measurements
Biolever mini cantilever,  BL-AC40TS-C2 Olympus Germany LLC, Germany  BL-AC40TS-C2 Prefered cantilever for AFM measurements
WSxM 5.0 Develop 6.5 (2013) Nanotec Electronica S.L. , Spain freeware Software for AFM analysis
Name Company Catalog Number Comments
Detergents and other equiment
Calcium chloride Dihydrate (CaCl2 ∙ 2H2O) Merck KGaA 1.02382
acidic acid, 100 %, p.A. CARL ROTH GmbH+CO.KG 3738.5 Danger, flammable and corrosive liquid and vapour. Causes severe skin burns and eye damage.
Antifoam 204 Sigma-Aldrich Co. LLC. A6426 For foam suppression
bromophenol blue, sodium salt Sigma-Aldrich Co. LLC. B5525
Coomassie Brilliant Blue R (C45H44N3NaO7S2) CARL ROTH GmbH+CO.KG 3862.1
Deoxyribonuclease II from porcine spleen Sigma-Aldrich Co. LLC. D4138 Typ IV , 2,000-6,000 Kunitz units/mg protein
Ethanol, 95% VWR, Germany 20827.467 Danger, flammable
glycerine, p.A. CARL ROTH GmbH+CO.KG 3783.1
Gold(III) chloride trihydrate (HAuCl4 ∙ 3H2O) Sigma-Aldrich Co. LLC. 520918 Danger
Guanidine hydrochloride (GuHCl) CARL ROTH GmbH+CO.KG 0037.1
Hellmanex III Hellma GmbH & Co. KG 9-307-011-4-507
Hydrochloric acid (HCl) (37%) CARL ROTH GmbH+CO.KG 4625.2 Danger; Corrosive, used for pH adjustment
Lysozyme from chicken egg white Sigma-Aldrich Co. LLC. L6876  Lyophilized powder, protein =90 %, =40,000 units/mg protein (Sigma) 
Magnesium chloride Hexahydrate (MgCl2 ∙ 6H2O) Merck KGaA 1.05833
Magnetic stirrer with heating,  MR 3000K Heidolph Instruments GmbH & Co.KG, Germany 504.10100.00 Standard stirrer within experiment
NB-Media DM180 Mast Diagnostica GmbH 121800
Nitric acid (HNO3) CARL ROTH GmbH+CO.KG HN50.1 Danger; Oxidizing, Corrosing
PageRuler Unstained Protein Ladder ThermoScientific-Pierce 26614
Poly(sodium 4-styrenesulfonat) (PSS) Sigma-Aldrich Co. LLC. 243051 Average Mw ~70,000
Polyethylenimine (PEI), branched Sigma-Aldrich Co. LLC. 408727 Warning; Harmful, Irritant, Dangerous for the environment; average Mw ~25,000
Potassium carbonate anhydrous (K2CO3) Sigma-Aldrich Co. LLC. 60108 Warning; Harmful
Ribonuclease A from bovine pancreas  Sigma-Aldrich Co. LLC. R5503 Type I-AS, 50-100 Kunitz units/mg protein 
Sodium azide (NaN3) Merck KGaA 106688 Danger; very toxic and Dangerous for the environment
Sodium chloride (NaCl) CARL ROTH GmbH+CO.KG 3957.2
Sodium dodecyl sulfate (SDS) Sigma-Aldrich Co. LLC. L-5750 Danger; toxic
Sodium hydroxide (NaOH) CARL ROTH GmbH+CO.KG 6771.1 Danger; Corrosive, used for pH regulation within cultivation and pH adjustment
Spectra/Por 6, Dialysis membrane, MWCO 50,000  CARL ROTH GmbH+CO.KG 1893.1
Sulfuric acid (H2SO4) CARL ROTH GmbH+CO.KG HN52.2 Danger; Corrosive, used for pH regulation within cultivation
Tannic acid (C76H52O46) Sigma-Aldrich Co. LLC. 16201
TRIS HCl (C4H11NO3HCl) CARL ROTH GmbH+CO.KG 9090.2
Tri-sodium citrate dihydrate (C6H5Na3O7 ∙ 2H2O) CARL ROTH GmbH+CO.KG 3580.2
Triton X-100 CARL ROTH GmbH+CO.KG 3051.3 Warning; Harmful, Dangerous for the environment
VIVASPIN 500, 50.000 MWCO Ultrafiltration tubes Sartorius AG VS0132
β-mercaptoethanol Sigma-Aldrich Co. LLC. M6250 Danger, toxic

References

  1. Merroun, M. L., Rossberg, A., Hennig, C., Scheinost, A. C., Selenska-Pobell, S. Spectroscopic characterization of gold nanoparticles formed by cells and S-layer protein of Bacillus sphaericus JG-A12. Mater. Sci. Eng. C. 27 (1), 188-192 (2007).
  2. Raff, J., Soltmann, U., Matys, S., Selenska-Pobell, S., Bottcher, H., Pompe, W. Biosorption of uranium and copper by biocers. Chem. Mat. 15 (1), 240-244 (2003).
  3. Sleytr, U. B., Schuster, B., Egelseer, E. M., Pum, D. S-Layers: Principles and Applications. FEMS Microbiol. Rev. , (2014).
  4. Pollmann, K., Raff, J., Merroun, M., Fahmy, K., Selenska-Pobell, S. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24 (1), 58-68 (2006).
  5. Raff, J., Selenska-Pobell, S. Toxic avengers. Nucl. Eng. Int. 51, 34-36 (2006).
  6. Tsuruta, T. Biosorption and recycling of gold using various microorganisms. J. Gen. Appl. Microbiol. 50 (4), 221-228 (2004).
  7. Sathishkumar, M., Mahadevan, A., Vijayaraghavan, K., Pavagadhi, S., Balasubramanian, R. Green Recovery of Gold through Biosorption, Biocrystallization, and Crystallization. Ind. Eng. Chem. Res. 49 (16), 7129-7135 (2010).
  8. Das, N. Recovery of precious metals through biosorption – A review. Hydrometallurgy. 103 (1-4), 180-189 (2010).
  9. Volesky, B. Biosorption and me. Water Res. 41 (18), 4017-4029 (2007).
  10. Vilar, V. J. P., Botelho, C. M. S., Boaventura, R. A. R., Atimtay, T. A., Sikdar, S. K. Environmental Friendly Technologies for Wastewater Treatment: Biosorption of Heavy Metals Using Low Cost Materials and Solar Photocatalysis. Security of Industrial Water Supply and Management.NATO Science for Peace and Security Series C-Environmental Security. , 159-173 (2010).
  11. Lovley, D. R., Lloyd, J. R. Microbes with a mettle for bioremediation. Nat. Biotechnol. 18 (6), 600-601 (2000).
  12. Schiewer, S., Volesky, B., Lovely, D. R. . Environmental Microbe-Metal Interactions. , 329-362 (2000).
  13. Raff, J., Berger, S., Selenska-Pobell, S. Uranium binding by S-layer carrying isolates of the genus Bacillus. Annual Report 2006 Institute of Radiochemistry. , (2006).
  14. Srinath, T., Verma, T., Ramteke, P. W., Garg, S. K. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 48 (4), 427-435 (2002).
  15. Godlewska-Zylkiewicz, B. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectroc. Acta Pt. B-Atom. Spectr. 58 (8), 1531-1540 (2003).
  16. Hosea, M., et al. Accumulation of elemental gold on the alga Chlorella-vulgaris. Inorg. Chim. A-Bioinor. 123 (3), 161-165 (1986).
  17. Vogel, M., et al. Biosorption of U(VI) by the green algae Chlorella vulgaris. in dependence of pH value and cell activity. Sci. Total Environ. 409 (2), 384-395 (2010).
  18. Creamer, N., Baxter-Plant, V., Henderson, J., Potter, M., Macaskie, L. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol Lett. 28 (18), 1475-1484 (2006).
  19. Suhr, M., et al. Investigation of metal sorption behavior of Slp1 from Lysinibacillus sphaericus. JG-B53 – A combined study using QCM-D, ICP-MS and AFM. Biometals. 27 (6), 1337-1349 (2014).
  20. Suhr, M. . Isolierung und Charakterisierung von Zellwandkomponenten der gram-positiven Bakterienstämme Lysinibacillus sphaericus JG-A12 und JG-B53 und deren Wechselwirkungen mit ausgewählten relevanten Metallen und Metalloiden. , (2015).
  21. Spain, A., Alm, E. Implications of Microbial Heavy Metal Tolerance in the Environment. Reviews in Undergraduate Research. 2, 1-6 (2003).
  22. Ledin, M. Accumulation of metals by microorganisms – processes and importance for soil systems. Earth-Sci. Rev. 51 (1-4), 1-31 (2000).
  23. Maruyama, T., et al. Proteins and Protein-Rich Biomass as Environmentally Friendly Adsorbents Selective for Precious Metal Ions. Environ. Sci. Technol. 41 (4), 1359-1364 (2007).
  24. Sara, M., Sleytr, U. B. S-layer proteins. J. Bacteriol. 182 (4), 859-868 (2000).
  25. Baranova, E., et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature. 487 (7405), 119-122 (2012).
  26. Teixeira, L. M., et al. Entropically Driven Self-Assembly of Lysinibacillus sphaericus S-Layer Proteins Analyzed Under Various Environmental Conditions. Macromol. Biosci. 10 (2), 147-155 (2010).
  27. Ahmed, I., Yokota, A., Yamazoe, A., Fujiwara, T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57 (5), 1117-1125 (2007).
  28. Panak, P., et al. Bacteria from uranium mining waste pile: interactions with U(VI). J. Alloy. Compd. 271, 262-266 (1998).
  29. Selenska-Pobell, S., Kampf, G., Flemming, K., Radeva, G., Satchanska, G. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Antonie Van Leeuwenhoek. 79 (2), 149-161 (2001).
  30. Lederer, F. L., et al. Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53. Microbiology. 159 ( Pt 6), 1097-1108 (2013).
  31. Günther, T. J., Suhr, M., Raff, J., Pollmann, K. Immobilization of microorganisms for AFM studies in liquids. RSC Advances. 4, 51156-51164 (2014).
  32. Fahmy, K., et al. Secondary Structure and Pd(II) Coordination in S-Layer Proteins from Bacillus sphaericus. Studied by Infrared and X-Ray Absorption Spectroscopy. Biophys. J. 91 (3), 996-1007 (2006).
  33. Pollmann, K., Merroun, M., Raff, J., Hennig, C., Selenska-Pobell, S. Manufacturing and characterization of Pd nanoparticles formed on immobilized bacterial cells. Lett. Appl. Microbiol. 43 (1), 39-45 (2006).
  34. Corti, C., Holliday, R. . Gold : science and applications. , (2010).
  35. Daniel, M. C., Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104 (1), 293-346 (2004).
  36. Tang, J., et al. Fabrication of Highly Ordered Gold Nanoparticle Arrays Templated by Crystalline Lattices of Bacterial S-Layer Protein. Chem. Phys. Chem. 9 (16), 2317-2320 (2008).
  37. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today. 36 (1), 153-166 (1997).
  38. Habibi, N., et al. Nanoengineered polymeric S-layers based capsules with targeting activity. Colloids and surfaces. B, Biointerfaces. 88 (1), 366-372 (2011).
  39. Toca-Herrera, J. L., et al. Recrystallization of Bacterial S-Layers on Flat Polyelectrolyte Surfaces and Hollow Polyelectrolyte Capsules. Small. 1 (3), 339-348 (2005).
  40. Decher, G., Lehr, B., Lowack, K., Lvov, Y., Schmitt, J. New nanocomposite films for biosensors – Layer-by-Layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens. Bioelectron. 9 (9-10), 677-684 (1994).
  41. Decher, G., Schmitt, J. Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Progress in Colloid & Polymer Science. 89 Trends in Colloid and Interface Science VI, (1992).
  42. Günther, T. J. . S-Layer als Technologieplattform – Selbstorganisierende Proteine zur Herstellung funktionaler Beschichtungen. , (2015).
  43. Delcea, M., et al. Thermal stability, mechanical properties and water content of bacterial protein layers recrystallized on polyelectrolyte multilayers. Soft Matter. 4 (7), 1414-1421 (2008).
  44. Roach, P., Farrar, D., Perry, C. C. Interpretation of Protein Adsorption: Surface-Induced Conformational Changes. J. Am. Chem. Soc. 127 (22), 8168-8173 (2005).
  45. Zeng, R., Zhang, Y., Tu, M., Zhou, C. R., et al. Protein Adsorption Behaviors on PLLA Surface Studied by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Materials Science Forum. 610-613, 1219-1223 (2009).
  46. Bonroy, K., et al. Realization and Characterization of Porous Gold for Increased Protein Coverage on Acoustic Sensors. Anal. Chem. 76 (15), 4299-4306 (2004).
  47. Pum, D., Toca-Herrera, J. L., Sleytr, U. B. S-layer protein self-assembly. Int. J. Mol. Sci. 14 (2), 2484-2501 (2013).
  48. Weinert, U., et al. S-layer proteins as an immobilization matrix for aptamers on different sensor surfaces. Eng. Life Sci. , (2015).
  49. Umeda, H., et al. Recovery and Concentration of Precious Metals from Strong Acidic Wastewater. Mater. Trans. 52 (7), 1462-1470 (2011).
  50. Engelhardt, H., Saxton, W. O., Baumeister, W. 3-Dimensional structure of the tetragonal surface-layer of Sporosarcina-urea. J. Bacteriol. 168 (1), 309-317 (1986).
  51. Sprott, G. D., Koval, S. F., Schnaitman, C. A. . Methods for general and molecular bacteriology. , 72-103 (1994).
  52. Laemmli, U. K. Cleavage of Structural Proteins during Assembly of Head Bacteriophage T4. Nature. 227 (5259), 680-685 (1970).
  53. Stoscheck, C., Deutscher, M. P. [6] Quantitation of protein. Methods in Enzymology. 182, 50-68 (1990).
  54. Sleytr, U. B., Messner, P., Pum, D. Analysis of Crystalline Bacterial Surface-Layers by Freeze-Etching Metal Shadowing, Negative Staining and Ultra-Thin Sectioning. Method Microbiol. 20, 29-60 (1988).
  55. PerkinElmer. . ICP Mass Spectrometry – The 30-Min to ICP-MS. , (2001).
  56. Mühlpfordt, H. The preparation of colloidal Gold Nanoparticles using tannic-acid as an additional reducing agent. Experientia. 38 (9), 1127-1128 (1982).
  57. Hayat, M. A. . Colloidal Gold – Principles, Methods and Applications. , (1989).
  58. Amendola, V., Meneghetti, M. Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy. The Journal of Physical Chemistry C. 113 (11), 4277-4285 (2009).
  59. Schurtenberger, P., Newman, M. E., Buffle, J., van Leeuwen, H. P. . Characterization of biological and environmental particles using static and dynamic light scattering in Environmental Particles. 2, 37-115 (1993).
  60. Jain, R., et al. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles. Environmental Science & Technology. 49 (3), 1713-1720 (2015).
  61. Harewood, K., Wolff, J. S. Rapid electrophoretic procedure for detection of SDS-released oncorna-viral RNA using polyacrylamide-agarose gels. Anal. Biochem. 55 (2), 573-581 (1973).
  62. Penfold, J., Staples, E., Tucker, I., Thomas, R. K. Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir. 18 (15), 5755-5760 (2002).
  63. Krozer, A., Rodahl, M. X-ray photoemission spectroscopy study of UV/ozone oxidation of Au under ultrahigh vacuum conditions. J. Vac. Sci. Technol. A-Vac. Surf. Films. 15 (3), 1704-1709 (1997).
  64. Vig, J. R. UV ozone cleaning of surfaces. J. Vac. Sci. Technol. 3 (3), 1027-1034 (1985).
  65. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift Fur Physik. 155 (2), 206-222 (1959).
  66. Q-Sense – Biolin Scientific. . Introduction and QCM-D Theory – Q-Sense Basic Training. , (2006).
  67. Edvardsson, M., Rodahl, M., Kasemo, B., Höök, F. A dual-frequency QCM-D setup operating at elevated oscillation amplitudes. Anal. Chem. 77 (15), 4918-4926 (2005).
  68. Hovgaard, M. B., Dong, M. D., Otzen, D. E., Besenbacher, F. Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid-liquid interface. Biophys. J. 93 (6), 2162-2169 (2007).
  69. Liu, S. X., Kim, J. T. Application of Kelvin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D. Jala. 14 (4), 213-220 (2009).
  70. Reviakine, I., Rossetti, F. F., Morozov, A. N., Textor, M. Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. J. Chem. Phys. 122 (20), (2005).
  71. Voinova, M. V., Rodahl, M., Jonson, M., Kasemo, B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys. Scr. 59 (5), 391-396 (1999).
  72. Fischer, H., Polikarpov, I., Craievich, A. F. Average protein density is a molecular-weight-dependent function. Protein Sci. 13 (10), 2825-2828 (2004).
  73. Schuster, B., Pum, D., Sleytr, U. B. S-layer stabilized lipid membranes (Review). Biointerphases. 3 (2), FA3-FA11 (2008).
  74. Malmström, J., Agheli, H., Kingshott, P., Sutherland, D. S. Viscoelastic Modeling of Highly Hydrated Laminin Layers at Homogeneous and Nanostructured Surfaces: Quantification of Protein Layer Properties Using QCM-D and SPR. Langmuir. 23 (19), 9760-9768 (2007).
  75. Vörös, J. The Density and Refractive Index of Adsorbing Protein Layers. Biophys. J. 87 (1), 553-561 (2004).
  76. Hillier, A. C., Bard, A. J. ac-mode atomic force microscope imaging in air and solutions with a thermally driven bimetallic cantilever probe. Rev. Sci. Instrum. 68 (5), 2082-2090 (1997).
  77. Horcas, I., et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78 (1), 013705 (2007).
  78. Merroun, M. L., Rossberg, A., Scheinost, A. C., Selenska-Pobell, S. XAS characterization of gold nanoclusters formed by cells and S-layer sheets of B. sphaericus JG-A12. Annual Report Forschungszentrum Rossendorf – Institute for Radiochemistry. , (2005).
  79. Jankowski, U., Merroun, M. L., Selenska-Pobell, S., Fahmy, K. S-Layer protein from Lysinibacillus sphaericus. JG-A12 as matrix for Au III sorption and Au-nanoparticle formation. Spectroscopy. 24 (1), 177-181 (2010).
  80. Selenska-Pobell, S., et al. Magnetic Au nanoparticles on archaeal S-Layer ghosts as templates. Nanomater. nanotechnol. 1 (2), 8-16 (2011).
  81. Caruso, F., Furlong, D. N., Kingshott, P. Characterization of ferritin adsorption onto gold. J. Colloid Interface Sci. 186 (1), 129-140 (1997).
  82. Ward, M. D., Buttry, D. A. In situ interfacial mass detection with piezoelectric transducers. Science. 249 (4972), 1000-1007 (1990).
  83. Höök, F., et al. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 73 (24), 5796-5804 (2001).
  84. Wahl, R. . Reguläre bakterielle Zellhüllenproteine als biomolekulares Templat. , (2003).
  85. Jennings, T., Strouse, G. . Past, present, and future of gold nanoparticles in Bio-Applications of Nanoparticles. , 34-47 (2007).
  86. Beveridge, T., Fyfe, W. Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22 (12), 1893-1898 (1985).
check_url/cn/53572?article_type=t

Play Video

Cite This Article
Suhr, M., Raff, J., Pollmann, K. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 – QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies. J. Vis. Exp. (107), e53572, doi:10.3791/53572 (2016).

View Video