Summary

レシオメトリック蛍光顕微鏡によってファゴソームのpHを測定します

Published: December 07, 2015
doi:

Summary

Phagosomal pH influences phagosome maturation, oxidant production, phagosomal killing as well as antigen presentation. Here we describe a ratiometric method for measuring time-course and endpoint pH changes in individual phagosomes in living phagocytes using fluorescence microscopy.

Abstract

食作用は、先天性免疫細胞が死滅させるかまたは中和摂取材料を、または抗原として​​それを提示し、適応免疫応答を開始するために、細菌、アポ​​トーシス細胞または他の異物を飲み込み、それを通して基本的な過程です。ファゴソームのpHは、内膜およびタンパク質分解酵素の活性化、食作用性空胞が分解オルガネラに成熟することを可能にするイベントと核分裂や核融合を制御する重要なパラメータです。加えて、H +との転座は、他の宿主組織への効率的な殺傷及びシグナリングのために必須である活性酸素種(ROS)の高レベルの産生のために必要とされます。多くの細胞内病原体は、フ​​ァゴソームの生物学におけるpHの重要性を強調し、ファゴソーム酸性化を制限することにより、食細胞死滅を覆します。ここでは、フルオレセインイソチオシアネート(FITC)を使用して、好中球にファゴソームのpHを測定するためのレシオメトリック法は貪食TARGとしてザイモサンを標識説明しますETS、ライブセルイメージング。アッセイは、単一色素の蛍光よりもむしろ絶対的なpH依存性比の定量を、可能にする、440 nmで励起した場合、490nmで励起した場合、酸性pHによりクエンチされないが、FITCの蛍光特性に基づいています。 インサイチュ染料較正及び実際のpH値との比変換を行うための詳細なプロトコルも提供されます。彼らは、このような漂白などの摂動に対する感度が低いなどの単一染料レシオメトリック法は、一般的に測定された信号を歪ま変化、レーザーの変動、および不均一なラベルを、集中、単一の波長またはデュアル色素擬似レシオメトリックのプロトコルよりも優れて考えられています。この方法は、容易に他の食細胞タイプのpHを測定するために変更することができ、及びザイモサンは、不活性ビーズからの生きた微生物を、任意の他のアミン含有粒子で置き換えることができます。最後に、この方法は、異なるpH範囲に感受性の他の蛍光プローブまたは他のphagosomを利用するように適合させることができますアル活動は、それファゴソームの機能イメージングのための一般的なプロトコルとなっています。

Introduction

Phagocytosis, the process through which innate immune cells engulf large particles, evolved from the eating mechanism of single-celled organisms, and involves binding to a target, enveloping it with a membrane and pinching the membrane off to form a vacuole within the cytosol called a phagosome. While the phagosomal membrane is derived from the plasma membrane, active protein and lipid sorting, as well as fusion with endomembranes during phagosome formation, transform the phagosome into a distinct organelle within the cell with degradative properties that allow the killing, neutralization and breakdown of the ingested material1-3. This process, called phagosomal maturation, relies on the delivery of a host of proteolytic and microbicidal enzymes, including the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which transfers electrons into phagosomes producing the strong oxidant O2 and its derivative reactive oxygen species (ROS) 2,4.

The luminal pH of phagosomes has a profound influence on several events required for phagosome function. First, pH influences trafficking of endomembranes in general, as pH-dependent conformational changes of transmembrane trafficking regulators alters the recruitment of trafficking determinants such as Arfs, Rabs and vesicular coat-proteins, which in turn define which vesicles may fuse with phagosomes 5-8. Second, the ionic composition of the phagosomal lumen is also transformed as phagosomes mature, and some ion transporters, such as the Na+/H+ exchanger or ClC family Cl/H+ antiporters, which promote phagocytic function, rely on H+ translocation 9,10. Similarly, ROS production is intimately linked with phagosomal pH. ROS and its toxic oxidant byproducts have long been recognized as crucial for phagosomal killing in neutrophils 4,11,12, and have been shown to play critical roles in other phagocytes including macrophages, dendritic cells (DCs) and amoeba 13-16. The NADPH oxidase is an electrogenic enzyme that releases H+ in the cytosol as NADPH is consumed, and that requires the simultaneous transfer of H+ through companion HVCN1 channels alongside the transported electrons into the phagosomal lumen, in order to alleviate the massive depolarization that would otherwise lead to self-inhibition of the enzyme 17-21. Finally, several proteolytic enzymes have optimal activity at different pH, so time-dependent phagosomal pH changes can influence which enzymes are active and when. The importance of phagosomal pH is highlighted by organisms such as Mycobacterium tuberculosis, Franciscella tularensis and Salmonella typherium that subvert phagocytic killing at least in part by altering phagosomal pH 22-24.

In mammals the main phagocytes are neutrophils, macrophages and dendritic cells, and depending on cell type, time-dependent phagosomal pH changes can vary widely, and appear to play different roles. In macrophages a strong and rapid acidification mediated by the ATP-dependent proton pump vacuolar ATPase (V-ATPase) is one of the key factors mediating killing 25-27, resembling the mechanisms present in amoeba that use phagocytosis as an eating mechanism 28. In these cells activation of acidic proteases is thought to play a key role. In contrast, neutrophil killing relies more on ROS as well as HOCl produced by myeloperoxidase (MPO)11, and the pH remains neutral or alkaline during the first 30 min acidifying only later 29,30. Neutral pH has been suggested to favor the activity of oxidative proteases such as certain cathepsins. In DCs phagosomal pH is controversial, with some reporting acidification and others neutral or alkaline pH 31,32, but ROS and pH may profoundly influence the ability of these cells to present antigens to T cells, one of their main functions 33.

Importantly, hormones, chemokines and cytokines may produce signaling events that induce maturation and changes in phagocyte behavior, and in turn influence phagosomal pH 34,35. Similarly, drugs, for example the antimalarial chloroquine, which is also considered for anti-cancer therapies 36, may affect phagosomal pH and therefore immune outcomes. Thus, a variety of cell biologists, immunologists, microbiologists and drug developers may be interested in measuring phagosomal pH when seeking to understand the mechanisms underlying the effects of a particular genetic disruption, bioactive compound or microorganism on innate and adaptive immune responses.

Here we describe a method for measuring phagosomal pH in neutrophils that allowed us to show the importance of the HVCN1 channel in regulating neutrophil phagosomal pH 19. The method is based on the ratiometric property of fluorescein isothiocyanate (FITC) whose fluorescence emission at 535 nm is pH sensitive when excited at 490 nm but not 440 nm 37. When this dye is chemically coupled to a target, in this case zymosan, it can be followed using wide-field fluorescence microscopy, where cells are imaged as they phagocytose, and phagosomal pH changes are measured in real time as the phagosome matures. The actual pH is then gleaned by performing a calibration experiment where cells that have phagocytosed are exposed to solutions of different pH that contain the ionophores nigericin and monensin, that allow the rapid equilibration of the pH within phagosomes with the external solution. Ratio values are then compared to the known pH of solutions, a calibration curve is constructed by nonlinear regression and the resulting equation used to calculate pH from the ratio value.

Protocol

倫理の声明:すべての動物の操作は、ジュネーブ大学の動物実験委員会のガイドラインに厳密に従って行きました。 貪食ターゲットの作製 10 mlの滅菌リン酸緩衝食塩水(PBS)で乾燥したザイモサン20mgを加えます。 10分間沸騰水浴中で渦と熱。クールで5分間2,000×gで遠心します。 水浴ソニケーターで、上清を除去し1mlのPBS中に再懸濁し、10分間超音?…

Representative Results

/ – -以下は、初代マウス好中球のファゴソームpHは野生型またはHvcn1の骨髄から分離された実験の代表的な結果であります マウスを比較しました。成功した実験では、それは後の画像解析の際にセグメントに、より困難になりますあまりにも多くのファゴソームを回避しながら、タイムラプスムービーの全期間中に視野内に十分なファゴソームを得ることが重要で…

Discussion

ターゲットに接続されたpH感受性色素を用いた同様の戦略を採用するが、ファゴソームの集​​団の平均pH値を測定し、このような分光法およびFACSなどの代替の方法、より多くの時間がかかりますが、顕微鏡検査は、いくつかの利点を提供しています。最初に、内部および外部で結合したことであるが、内在化しない、粒子は容易にそれぞれ、外部粒子を急冷または標識するために、トリパ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors are financially supported by the Swiss National Science Foundation through an operating grant N° 31003A-149566 (to N.D.), and The Sir Jules Thorn Charitable Overseas Trust through a Young Investigator Subsidy (to P.N.).

Materials

Zymosan A powder Sigma-Aldrich Z4250 Various providers exist
Fluorescein isothiocyanate Sigma-Aldrich F7250 Various providers exist
Anti-zymosan antibody (Zymosan A Bioparticles opsonizing reagent) Life Technologies Z2850 Sigma-Aldrich O6637 is an equivalent product. Alternatively 25% serum can be used as an opsonizing reagent.
4-Aminobenzoic hydrazide (4-ABH) Santa Cruz sc-204107 Toxic, use gloves, various providers exist
Diphenyleneiodonium chloride (DPI) Sigma-Aldrich D2926 Toxic, use gloves, various providers exist
Concanamycin A (ConcA) Sigma-Aldrich 27689 Toxic, use gloves, various providers exist
Nigericin Sigma-Aldrich N7143 Toxic, use gloves, various providers exist
Monensin Enzo ALX-380-026-G001 Toxic, use gloves, various providers exist
Phosphate buffered saline (PBS) Life Technologies 14200-075 Various providers exist
Hank's balance salt solution Life Technologies 14025092 Ringer's balanced salt solution or other clear physiological buffers may be substituted.
Sodium carbonate (Na2CO3) Sigma-Aldrich S7795 Various providers exist
2-(N-Morpholino)ethanesulfonic acid (MES) Sigma-Aldrich M3671  Various providers exist
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) Sigma-Aldrich H3375 Various providers exist
N-Methyl-D-glucamine (NMDG) Sigma-Aldrich M2004  Various providers exist
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) Sigma-Aldrich 3777 Various providers exist
 Tris(hydroxymethyl)aminomethane (Tris) Sigma-Aldrich T1503  Various providers exist
Potassium chloride (KCl) Sigma-Aldrich P9333 Various providers exist
Sodium chloride (NaCl) Sigma-Aldrich S7653 Various providers exist
Magnesium chloride (MgCl2) Sigma-Aldrich M8266 Various providers exist
Absolute Ethanol (EtOH) Sigma-Aldrich 2860 Various providers exist
Glass-bottom 35 mm petri dishes (Fluorodish) World Precision Instruments FD35-100 Ibidi µ-clear dishes or coverslips with appropriate imaging chambers may be sustituted
Sonicating water bath O. Kleiner AG A sonicator may be used instead, various instrument providers exist
Heamocytometer Marienfeld GmbH Various instrument providers exist
Widefield live imaging microscope Carl Zeiss AG Various instrument providers exist, but the microscope must be able to image 440/535 and 490/535 excitation/emission respective. Spinning disk confocal set-ups with brightfield capabilities may substituted, but zymosan tend to go out of focus more often.  
Peristaltic pump (Dynamax RP-1) Rainin Various instrument providers exist
pH meter Schott Gerate GmbH Various instrument providers exist
Manual Counter Milian SA Various instrument providers exist

References

  1. Yeung, T., Grinstein, S. Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev. 219, 17-36 (2007).
  2. Flannagan, R. S., Jaumouille, V., Grinstein, S. The cell biology of phagocytosis. Annu Rev Pathol. 7, 61-98 (2012).
  3. Fairn, G. D., Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33 (8), 397-405 (2012).
  4. Nunes, P., Demaurex, N., Dinauer, M. C. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic. 14 (11), 1118-1131 (2013).
  5. Binder, B., Holzhutter, H. G. A hypothetical model of cargo-selective rab recruitment during organelle maturation. Cell Biochem Biophys. 63 (1), 59-71 (2012).
  6. Hurtado-Lorenzo, A., et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol. 8 (2), 124-136 (2006).
  7. Weisz, O. A. Acidification and protein traffic. Int Rev Cytol. 226, 259-319 (2003).
  8. Huynh, K. K., Grinstein, S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev. 71 (3), 452-462 (2007).
  9. De Vito, P. The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol. 240 (2), 69-85 (2006).
  10. Moreland, J. G., Davis, A. P., Bailey, G., Nauseef, W. M., Lamb, F. S. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem. 281 (18), 12277-12288 (2006).
  11. Winterbourn, C. C., Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal. 18 (6), 642-660 (2013).
  12. Seredenina, T., Demaurex, N., Krause, K. H. Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology. Antioxid Redox Signal. , (2014).
  13. Kotsias, F., Hoffmann, E., Amigorena, S., Savina, A. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal. 18 (6), 714-729 (2013).
  14. Grimm, M. J., et al. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. J Immunol. 190 (8), 4175-4184 (2013).
  15. West, A. P., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 472 (7344), 476-480 (2011).
  16. Bloomfield, G., Pears, C. Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci.. 116 (Pt 16), 3387-3397 (2003).
  17. Ramsey, I. S., Moran, M. M., Chong, J. A., Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature. 440 (7088), 1213-1216 (2006).
  18. El Chemaly, A., Demaurex, N. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes?. Mol Cell Endocrinol. 353 (1-2), 82-87 (2012).
  19. El Chemaly, A., Nunes, P., Jimaja, W., Castelbou, C., Demaurex, N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol. , (2014).
  20. Decoursey, T. E. Voltage-gated proton channels. Compr Physiol. 2 (2), 1355-1385 (2012).
  21. Ramsey, I. S., Ruchti, E., Kaczmarek, J. S., Clapham, D. E. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci U S A. 106 (18), 7642-7647 (2009).
  22. Sturgill-Koszycki, S., et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 263 (5147), 678-681 (1994).
  23. Clemens, D. L., Lee, B. Y., Horwitz, M. A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 72 (6), 3204-3217 (2004).
  24. Alpuche-Aranda, C. M., Swanson, J. A., Loomis, W. P., Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A. 89 (21), 10079-10083 (1992).
  25. Lukacs, G. L., Rotstein, O. D., Grinstein, S. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ ‘leak’. J Biol Chem. 266 (36), 24540-24548 (1991).
  26. Watanabe, K., Kagaya, K., Yamada, T., Fukazawa, Y. Mechanism for candidacidal activity in macrophages activated by recombinant gamma interferon. Infect Immun. 59 (2), 521-528 (1991).
  27. Ip, W. K., et al. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus. J Immunol. 184 (12), 7071-7081 (2010).
  28. Clarke, M., Maddera, L. Phagocyte meets prey: uptake, internalization, and killing of bacteria by Dictyostelium amoebae. Eur J Cell Biol. 85 (9-10), 1001-1010 (2006).
  29. Jankowski, A., Scott, C. C., Grinstein, S. Determinants of the phagosomal pH in neutrophils. J Biol Chem. 277 (8), 6059-6066 (2002).
  30. Segal, A. W., Geisow, M., Garcia, R., Harper, A., Miller, R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 290 (5805), 406-409 (1981).
  31. Savina, A., et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 126 (1), 205-218 (2006).
  32. Rybicka, J. M., Balce, D. R., Chaudhuri, S., Allan, E. R., Yates, R. M. Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J. 31 (4), 932-944 (2012).
  33. Mantegazza, A. R., et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood. 112 (12), 4712-4722 (2008).
  34. Balce, D. R., Allan, E. R., McKenna, N., Yates, R. M. gamma-Interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J Biol Chem. 289 (46), 31891-31904 (2014).
  35. Sanjurjo, L., et al. The scavenger protein apoptosis inhibitor of macrophages (AIM) potentiates the antimicrobial response against Mycobacterium tuberculosis by enhancing autophagy. PLoS One. 8 (11), e79670 (2013).
  36. Yuan, Z., Zhi, L., Li-Juan, Z., Hong-Tao, X. The Utility of Chloroquine in Cancer Therapy. Curr Med Res Opin. , 1-12 (2015).
  37. Ohkuma, S., Poole, B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 75 (7), 3327-3331 (1978).
  38. El Chemaly, A., et al. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J Exp Med. 207 (1), 129-139 (2010).
  39. Levine, A. P., Duchen, M. R., Segal, A. W. The HVCN1 channel conducts protons into the phagocytic vacuole of neutrophils to produce a physiologically alkaline pH. bioRxiv. , (2014).
  40. Al-Fageeh, M. B., Smales, C. M. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J. 397 (2), 247-259 (2006).
  41. Yui, N., et al. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol. 304 (1), C38-C48 (2013).
  42. Griffiths, G. On phagosome individuality and membrane signalling networks. Trends Cell Biol. 14 (7), 343-351 (2004).
  43. Poburko, D., Santo-Domingo, J., Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem. 286 (13), 11672-11684 (2011).

Play Video

Cite This Article
Nunes, P., Guido, D., Demaurex, N. Measuring Phagosome pH by Ratiometric Fluorescence Microscopy. J. Vis. Exp. (106), e53402, doi:10.3791/53402 (2015).

View Video