Bacterial attachment to host cells is a key step during host colonization and infection. This protocol describes the generation of polymer-coupled recombinant adhesins as biomimetic materials which allow analysis of the contribution of individual adhesins to these processes, independent of other bacterial factors.
Bacterial attachment to host cells is one of the earliest events during bacterial colonization of host tissues and thus a key step during infection. The biochemical and functional characterization of adhesins mediating these initial bacteria-host interactions is often compromised by the presence of other bacterial factors, such as cell wall components or secreted molecules, which interfere with the analysis. This protocol describes the production and use of biomimetic materials, consisting of pure recombinant adhesins chemically coupled to commercially available, functionalized polystyrene beads, which have been used successfully to dissect the biochemical and functional interactions between individual bacterial adhesins and host cell receptors. Protocols for different coupling chemistries, allowing directional immobilization of recombinant adhesins on polymer scaffolds, and for assessment of the coupling efficiency of the resulting “bacteriomimetic” materials are also discussed. We further describe how these materials can be used as a tool to inhibit pathogen mediated cytotoxicity and discuss scope, limitations and further applications of this approach in studying bacterial – host interactions.
Dissecting the interactions between bacterial adhesins and host surface receptors at the host-pathogen interface is an essential step towards our understanding of the underlying mechanisms driving bacterial adhesion. Ultimately, this will help us to identify strategies to interfere with these processes during infections. In conducting such studies, we often face a dilemma: Biochemical and biophysical analysis of the molecular mechanisms of adhesin binding requires their separation from other cell wall components, which may interfere with adhesion events. On the other hand, the use of recombinant soluble proteins over-simplifies the adhesion event, by disregarding protein anchoring in the bacterial cell wall and multivalency of binding achieved through bacterial surface display. Equally, from the host cell’s perspective, encountering and binding to single adhesin molecules does not always have the same impact in terms of plasma membrane organization, membrane fluidity and receptor clustering1 and this, ultimately, makes it difficult to evaluate the impact of adhesion on host cellular signaling and the outcome of bacteria-host interactions.
Recently a method was devised, whereby recombinant purified adhesins or adhesin fragments are directionally and covalently coupled to polymer particles similar in size to bacteria, thus mimicking bacterial surface display. This approach has been used on a range of different adhesins, from Gram-negative Multivalent Adhesion Molecules (MAMs)2, 3, to Gram-positive adhesins including Staphylococcus aureus fibronectin binding protein (FnBPA)4, 5 and Streptococcus pyogenes F1 6, 7. This method has allowed the dissection of adhesin fragments important for host cell binding, identification of host surface receptors and determination of their behavior on the host cell surface, while taking both binding affinity and avidity into consideration 1, 8. Additionally, this approach has been used to investigate the efficacy of immobilized adhesins and derivatives as inhibitors of host-pathogen interactions 8, 9. It has been demonstrated that surface coupled derivatives of the Vibrio parahaemolyticus Multivalent Adhesion Molecule (MAM) 7 can be used to attenuate a range of bacterial infections in vitro, including those caused by multidrug-resistant pathogens such as Acinetobacter baumannii and methicillin-resistant S. aureus (MRSA) 7, 9.
Herein, we describe different chemistries which can be used to immobilize adhesins to commercially available functionalized polystyrene particles. Due to the wide array of available surface functionalities, labels and particle sizes, these are a useful scaffold for the production of bacteriomimetic materials to investigate adhesin-host interactions. We further describe methods for the initial characterization of the coupling reaction, and for the calculation of important properties of the resulting materials. Finally, the use of bead-coupled adhesins as competitive inhibitors of in vitro bacterial infections is discussed as an example of their application, as well as the future scope and limitations of this approach.
此,我们描述两个协议,可分别用于偶联含硫醇的蛋白质含胺或羧化物修饰的聚苯乙烯珠子。由于容易的程序,硫醇 – 胺偶联是优选的,但根据所期望的珠规范(直径,荧光性),使用胺官能化珠可能不是可能的,并且因此我们包括了一个协议,该协议将羧酸转换 – 到一个胺部分给研究者在选择支架的最大的灵活性。虽然这两个硫醇-胺和硫醇羧基耦合工作含有蛋白质,定向耦合任何半胱氨酸(即每其N-末端的蛋白质,模仿表面显示的固定化)需要无半胱氨酸残基的蛋白质,即制造作为GST融合蛋白质,或包含由现场引入单个末端半胱氨酸残定向诱变。如果有多个无功半胱氨酸载蛋白质内,这将导致随机的固定化,可能妨碍蛋白质的功能。许多细菌粘附不含有半胱氨酸自然。对于其他人,这也可以通过位点定向诱变除去,虽然这将需要大量的测定,以确保本机的结构和功能被保留在突变体。对于GST融合蛋白,纯化的GST-标签耦合到珠可作为一个合适的阴性对照。使用未偶联的珠子作为对照应该避免,因为这些通常具有更高的倾向,聚集在一起或粘附细胞非特异性。的简化版本的协议1.2,只用EDC,可以用来偶联蛋白质羧基官能化的聚合物珠,但在这种情况下,耦合发生经由在蛋白质的伯胺,因此,并不能保证定向耦合。
TCEP作为还原剂必须不替换为其它市售常用的还原剂,如dithiothreitol(DTT)或2-巯基乙醇(BME),作为其中包含的硫醇将在硫醇 – 马来酰亚胺偶联步骤与蛋白质偶联竞争。 PBS可以与其它缓冲液替换,但考虑下面的因素:缓冲器可能不包含伯胺(所谓的含Tris缓冲液不适合)。使用含非常低(<10mM)的盐浓度的缓冲区导致珠聚集也应避免。蛋白质纯度也是在此过程中要考虑,而且,以实现高品质的数据的一个重要因素,纯蛋白应该被使用。我们经常纯化蛋白在多个步骤,其中包括至少一个亲和纯化和凝胶过滤步骤,但在某些情况下,离子交换层析是作为第三步骤。其结果是用于偶联蛋白质的纯度通常为90%或更高是,作为判断通过SDS-PAGE。
建议确定的蛋白浓度在初始反应混合物以及第反应结束后,É上清液。这将有助于确定珠偶联蛋白的表观浓度,并因此耦合密度。这两个值的判定也将允许耦合效率的计算。这可以在制备在随后的反应中的起始蛋白溶液,以达到所需的最终浓度和偶联密度加以考虑。 Bradford试剂特别适合用于测定蛋白质浓度的前和耦合反应之后,为none物质在反应干扰染料复合物形成在所使用的浓度。如果较低的蛋白质浓度将被使用,这种方法可能必须通过更灵敏的检测方法来代替,但是注意有要支付给它必须是与包含在偶合反应中的物质相容的事实。此外,还建议使用新鲜配制的试剂和处理粉状试剂小心(例如,存储在密封容器中,并使用二氧化硅珠,以避免图的水分的试剂),因为试剂将影响耦合效率的质量。如果偶联效率低于预期,可能的补救措施包括增加初始卷边和蛋白浓度。如果正在使用较高浓度,的偶合试剂的浓度必须按比例增加,以保证足够的摩尔过量。修改珠/蛋白浓度是朝着优化通常是一个更好的一步,而不是增加反应时间。由于胎圈连接的协议是漫长的,我们通常准备大批量的材料。该悬浮液的等分试样可被管理单元在液氮中冷冻并保存在-20℃下数月。解冻等分试样不应该再冷冻,并应保持在4℃和在1-2天内使用。然而,这将与用作最初应测试的小批量的蛋白质的性质和稳定性而有所不同。
<p class ="“jove_content”">珠偶联粘附素可用于许多应用中,如下面讨论的。这个协议描述了通常用于测量的宿主细胞抑制细菌结合和病原体介导的细胞毒性的测定。该试验通常以测量的珠偶联MAMS竞争性抑制的Hela上皮细胞的感染与海食源性病原体副溶血性弧菌的能力,使用任一在细菌附着的降低的宿主细胞或降低的细胞毒性作为一读出。在这两种情况下,准备和竞争测定法遵循相同的协议。根据读出,不同V的菌株副溶血正在使用:细胞毒性菌株POR1用于细胞毒性测定,而对非细胞毒性菌株POR2用于测量细菌粘附,由于细胞死亡和细胞分离危及程序用于定量附着细菌。最初,补偿装置天信实验设置为逐步的协议,其中,宿主细胞是第一预孵育,然后加入细菌的珠。对于V.溶血性弧菌和所使用的珠的规格(2微米珠耦合到MAM7),这两个小珠和细菌可以在同一时间加入,而不改变所得到的细胞毒性。 也就是说,在这个实验装置,珠outcompete细菌为宿主细胞结合。取决于所使用的细菌种类和胎圈几何形状,可能有很好的理由用于保持珠粘附和细菌感染作为两个独立的步骤。例如,感染细胞与非活动细菌,将板除了感染介质后通常离心。然而,应该避免含珠混悬液板离心,因为这导致了小珠的细胞层上的高度分布不均匀。如果使用更小的颗粒尺寸,珠将需要更长的时间来解决在细胞表面上,在这种情况下,苏fficient时间应该允许前感染微珠附着。当细菌粘附用作读出,样品应在时间点采取其中宿主细胞不显著由感染菌株损坏,如细胞脱离和溶解可损害附着细菌的定量。
代替通过稀释电镀列举细菌粘附的,样品可替代地处理用于成像( 图5)。在这种情况下,组织培养细胞应接种到玻璃盖玻片,而不是直接进入孔中。此外,荧光珠和细菌表达的荧光蛋白可以被使用,随着感染特定的宿主细胞的标记。例如,竞争实验通常使用荧光红色罗丹明 – 鬼笔染色宿主细胞的肌动蛋白细胞骨架和荧光蓝色的珠子和荧光评估由感染引起,形态变化以及成像绿色(GFP表达或SYTO18染色)的细菌。
的珠偶联粘附素, 包括金黄色葡萄球菌FnBPA,酿脓链球菌的F1 FUD和副溶血性弧菌 MAM甲范围,已被用作仿生材料,研究粘附,粘附抑制和附着于贡献病原体介导的细胞毒性1,7,8。一种使用这种方法的优点是易于附着事件的可视化的,因为是在很宽的范围的颜色(例如,蓝色,荧光红,蓝,绿,橙)可用作支架的聚合物珠。因此,直接蛋白质标记,其可以与功能干扰,能够避免。此外,表面耦合模仿在细菌表面粘附的多价展示,从而反映了多种生理上相关的构象相比可溶性蛋白。
相比于使用完整的细菌或bacteri研究人突变,珠办法规避与细菌生长相关的问题。例如,长期(例如,O / N)细菌粘附到主机使用完整的细菌细胞的研究是经常会影响由伴随细菌生长现象-生长培养基和营养物耗尽的酸化的宿主细胞产生负面影响,和细菌复制最终危及成像质量。
最近,利用珠耦合黏附已扩大到包括其作为对参与信号细菌附着的下游过程宿主细胞因子亲和纯化工具的使用。V.副溶血 MAM7,通过结合在宿主细胞膜磷脂酸,触发器RhoA的活性和肌动蛋白的重排1,3。MAM偶联珠被用于纯化和鉴定参与组装为MAM宿主细胞的结果的信令平台蛋白结合。由于珠可很容易地从上清液分离通过短的离心步骤,和感兴趣的蛋白质共价偶联,这是一个很好的方法,实现了从污染蛋白质分离和富集相关蛋白复合物,它可用于下游应用如蛋白质组学或西印迹。
The authors have nothing to disclose.
The authors would like to thank members of the Krachler group for critical reading of the manuscript. DHS, DV and AMK were funded by the Biotechnology and Biological Sciences Research Council (BB/L007916/1), FA was funded by a Republic of Iraq Ministry of Higher Education and Scientific Research Scholarship and NPS was funded by a CONICYT Scholarship.
Reagents | |||
Tris(2-carboxyethyl)phosphine (TCEP) | Sigma | 646547 | Danger; corrosive can be bought as solution or freshly prepared |
Sulfosuccinimidyl 4-(p-maleimidophenyl)butyrate (Sulfo-SMPB) | Fisher | PN22317 | Danger; toxic |
L-cysteine | Sigma | 30089 | Danger; toxic |
Latex beads, amine-modified polystyrene, fluorescent blue – aqueous suspension, 2.0 μm mean particle size | Sigma | L0280 | harmful; a range of alternative particle sizes and colors is available |
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) | Thermo scientific | 22980 | |
N-hydroxysuccinimide (NHS) | Thermo scientific | 24500 | |
Carboxylate-modified polystyrene beads | Sigma | CLB9 | harmful; a range of alternative particle sizes and colors is available |
Ethylenediamine | Sigma | E26266 | Danger; flammable, corrosive, toxic, sensitizing |
Bovine Serum Albumin (BSA) | Promega | W3841 | |
Bradford reagent | Sigma | B6916 | Danger; corrosive and toxic |
Dulbecco’s Modified Eagle’s Medium – high glucose – With 4500 mg/L glucose and sodium bicarbonate, without L-glutamine, sodium pyruvate, and phenol red, liquid, sterile-filtered, suitable for cell culture | Sigma | D1145 | for infection experiments |
DMEM | Sigma | D6429 | for maintenance of cultured host cells |
Fetal Bovine Serum, heat inactivated | Sigma | F9665 | supplement for tissue culture medium |
Penicillin-Streptomycin – Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, sterile-filtered, BioReagent, suitable for cell culture |
Sigma | F9665 | supplement for tissue culture medium |
PBS | Sigma | D8537 | |
LDH Cytotoxicity detection kit | Takara | MK401 | |
Plasticware | |||
reagent reservoirs (25ml) | SLS | F267660 | |
24-well plates | Greiner | 662160 | |
96-well plates | Greiner | 655182 | |
Equipment | |||
haemocytometer | |||
microcentrifuge | |||
plate reader | |||
tissue culture facilities | |||
multichannel pipette |